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Motivation

large variety of genres, on the other hand, medical entities have several properties (dimensions) to compute the similarity

- Applicability — Similarity measurements between entities are essential in several applications and tasks in Artificial Intelligence in general and in Natural Language Processing in particular

- Challenging — The problem of having a well stablished numerical distances between semantic entities (drugs, in this case) is still not solved since it’s difficulty. On the one hand, there exists a

- Scope — The scope of this work goes farther than computing similarities between drugs. Our aim is to do the same for other medical entities (e.g. anatomical parts, diseases, etc.)

- Data — All data used along this work is extracted from DrugBank (version 5.0.11, released 2017-12-20). The DrugBank database is a unique bioinformatics and cheminformatics resource that

combines detailed drug data with comprehensive drug target information

« Implementation — Three different similarity measures are computed, using different properties or dimensions of the drug data: textual, taxonomic (both semantics) and molecular information

+ Evaluation — The computed similarities are evaluated indirectly (clustering based) and directly (ground truth based)
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Experiment
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