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Abstract. We face in this paper the problem of computing distance measures be-
tween medical entities. Specifically we deal with the most challenging type of med-
ical entity: drugs. Three different similarity measures between drugs are presented,
based each one on specific dimensions of drugs description, namely textual, taxo-
nomic and molecular information. All the information has been extracted from the
same resource, the DrugBank database.
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1. Introduction

More than one century ago, Lord Kelvin (William Thomson) said ”I often say that when
you can measure what you are speaking about and express it in numbers you know some-
thing about it; but when you cannot measure it, when you cannot express it in numbers,
your knowledge is of a meager and unsatisfactory kind”. This quote summarizes our
objective in the research reported here. We are working on the Biomedical domain and
we are interested in putting numbers on the medical entities. The most operative way
of doing so is to compute the distance2 between medical entities. There are many types
of medical entities, diseases, body parts, drugs, symptoms, medical findings, etc.3. We
have chosen drugs as our first step on our aim because its interest, its difficulty, and the
availability of a comprehensive lexical resource, DrugBank4 [1], as a semantic space for
applying the metrics.

The ways of computing distances between drugs basically are based on some intuitions:

• Two drugs are similar if their names are similar.
• Two drugs are similar if their descriptions are similar.
• Two drugs are similar if they are frequently applied over similar targets.

1Corresponding Author: Alberto Olivares-Alarcos; E-mail: alberto.olivares.alarcos@gmail.com
2Along the paper we will refer to distances and similarities equally, in fact mapping between the two mea-

sures is straightforward.
3For instance, SNOMED-CT, https://www.snomed.org/snomed-ct, one of the biggest terminologies of the

medical domain, is organized as a taxonomy having 18 top categories, being one of them, Pharmaceuti-
cal/biologic products roughly corresponding to Drug.

4https://www.drugbank.ca/
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• Two drugs are similar if their chemical compositions are similar.

With these intuitions in mind we can consider three basic types of distances: 1) Textual
(string-based), 2) Semantic, and 3) Chemical (Molecular).

Textual similarities are based on computing some overlap between the two strings (at the
level of words, n-grams, lemmas, etc.) and include distances as Damerau-Levenshtein
(string edit), Dice, Jaccard, and many others. See [2] for a survey. Semantic measures
are computed within a semantic space, usually an ontology or a knowledge base. The
most popular are based on WordNet5 on which several distances can be computed based
on the best path between the corresponding synsets6, [3]. Different approaches differ on
the way of computing the paths (type of relation, weighting, etc.). From them we have
chosen Leacock and Chodorow metric [4] computed as shown in Eq. (1) where length
is the length of the shortest path between the two concepts (using node-counting) and D
is the maximum depth of the taxonomy.

(1) Sim(d1,d2) =− log
(

length
2D

)
Similar approaches have been followed in [5] over the Wikipedia and, Within the medical
domain, in [6] 0ver UMLS7.

Chemical (Molecular) measures try to compare the 2D, representations of the
molecules using the fingerprints vectors8.

Sometimes units to be compared can be represented or mapped into a vectorial
space. In this case these units are vectors in a n dimensional space. The usual way of
defining distances is as instantiations of the Minkowski family. Minkowski distances are
induced by lp norms, see Eq. (2). For p = 1 we get the popular l1 norm, i.e. Manhattan
distance, Eq. (3), and For p = 2 the ordinary Euclidean distance, l2 norm, Eq. (4)

(2) Dp(~x,~y) = ‖~x−~y‖p = ∑
d
i=1(|xi− yi|p)1/p

(3) D11(~x,~y) = ∑
N
i=1 |xi− yi|

(4) D12(~x,~y) = |~x−~y|=
√

∑
N
i=1 |xi− yi|

One issue of these formulations is that it is implicitly assumed that the dimensions are
equally important. An alternative is weighting the dimensions, leading to the Maha-
lanobis metric, Eq. (5), being M a square semidefinite positive n×n matrix9. When M is
the identity Mahalanobis metric reduces to Euclidean Distance. When M is a diagonal

5https://wordnet.princeton.edu/
6http://wn-similarity.sourceforge.net/
7https://www.nlm.nih.gov/research/umls/
8A fingerprint is a vector, each element of which describes the presence of one or more substructures in

a molecule, with typical fingerprints containing a few hundred or a few thousand elements, and with two
molecules being considered to be similar if their fingerprints share common values for many of the constituent
elements.

9In the original formulation of Mahalanobis, M was the inverse of the covariance matrix of the input vectors.



October 2018

matrix the components are weighted by the value of the corresponding entry in the diag-
onal. In the general case M captures correlations between features implicitly existing in
the dataset.

(5) DM(~x,~y) =
√
(~x−~y)T M(~x−~y)

2. Related Work

Many applications in the medical domain are heavily based on the use of distance mea-
sures between medical entities, frequently quite simple. Our approach can result on im-
provements on these applications. [7] use distance measures for Question Answering.
[8] survey the task of Finding Patterns in Annotation graphs. The group lead by M.E.
Vidal, at Simon Bolivar University, has very nice contributions to this area, see [9]. Other
related applications are drug Discovery [10], drug targets [11] and drug interaction [12].
[13], perhaps the closest work to ours, study drug similarities including Chemical-based,
Ligand-based, Expression-based, Side-effect-based, and Annotation-based.

3. DrugBank

The data used for the experiments come from the database DrugBank, a unique bioin-
formatics/cheminformatics resource combining detailed drug (i.e. chemical) data with
comprehensive drug target (i.e. protein) information [1]. It is the most complete database
about drugs which there exists nowadays.

The latest release of DrugBank contains 11,002 drug entries including 2,503 ap-
proved small molecule drugs, 943 approved biotech (protein/peptide) drugs, 109 nu-
traceuticals and over 5,110 experimental drugs. Additionally, 4,910 non-redundant pro-
tein (i.e. drug target/enzyme/transporter/carrier) sequences are linked to these drug en-
tries. Each DrugCard entry contains more than 200 data fields with half of the informa-
tion being devoted to drug/chemical data and the other half devoted to drug target or pro-
tein data. Some of those fields are textual, like the ones used in the text based similarity
explained in the sub-section 4.1. Some other fields are related to the chemical structure
of a drug and have been used in the experiment explained in sub-section 4.3.

4. Computing Similarities Between Drugs

The implementation of the three similarities can be found on a free access repository on
GitHub10. The evaluation framework is detailed in Section 4.4.

4.1. Textual Similarity

Text similarity is the task of determining the degree of similarity between two texts. Texts
length can vary from single words to paragraphs or even complete documents. In our
case, the texts are a concatenation of different textual fields extracted from the DrugBank

10https://github.com/albertoOA/Medical-Entities-Similarity-Measurements
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database. Since the way of computing the text-based similarity relies on the bag of words
(BoW) paradigm, simple concatenation of textual fields seems to be a good choice.

The computation of text similarity is a very difficult task for machines. This is
mainly due to the enormous variability in natural language, in which texts can be con-
structed using different lexical and syntactic constructions. Even so, computing text sim-
ilarity has been for several years a fundamental means for many NLP tasks and applica-
tions. [14,15,16].

Our aim is to find a measure of similarity among the drugs found in DrugBank by
means of text similarity. To this purpose, the drugs were represented in a vector space
model, specifically, the data fields: description, indication and pharmacodynamics all
expressed in natural language were concatenated and, after removing stop words and
transforming to lowercase, their term frequency-inverse document frequency (tf-idf )
representation was computed. In this case, each document used to compute the tf-idf is
the concatenation of the textual fields of each drug, while the corpus is formed by all
those documents as a whole. Thus, the data is represented as the matrix MεRn×d , where
n is the number of drugs and d the number of words in the whole corpus.

Usually, the number of terms within a corpus is large, this together with the fact
that only few terms appear in a specific document give room to a sparse matrix. The
high dimensionality and sparseness of the matrix M entail to a well-known phenomenon
called ’curse of dimensionality’. In a nutshell, we lose statistical significance and the
Euclidean distance becomes meaningless.

Therefore, we perform a dimension reduction of the vector space model we have
computed. Specifically, we use Latent Semantic Indexing (LSI), also named Latent Se-
mantic Analysis (LSA). LSA uses SVD to rank the most discriminative and useful in-
formation from our data. The distance matrix is computed using the Euclidean distance
over the dimensionally reduced data. Of course, some information is lost after the reduc-
tion. The similarity is obtained (similarity = 1− distance) after having normalized the
distance matrix from zero to one.

4.2. Taxonomic Similarity

DrugBank contains two kinds of taxonomic structures: a set of fields named ’Classifica-
tion’ and the ATC Codes11. For this project, we have chosen to use the first one (Clas-
sification) to build a graph which is used to compute the similarity among the drugs.
The second graph (ATC Codes) is used to evaluate the result. The classification field of
DrugBank has 5 levels in total, enumerated from the highest to the lowest:

• Kingdom - Organic or Inorganic
• SuperClass - e.g. Organic Acids
• Class - e.g. Carboxylic Acids and Derivatives
• SubClass - e.g. Amino Acids, Peptides, and Analogues
• DirectParent - e.g. Peptides (can coincide with SubClass)

11The Anatomical Therapeutic Chemical (ATC) Classification System is used for the classification of active
ingredients of drugs according to the organ or system on which they act and their therapeutic, pharmacological
and chemical properties.
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The semantics of our taxonomy has only one sort of relationship: ’is-a’ relationship,
(e.g. Acetaminophen is-a SubClass of Benzenoids, or which is the same, Benzenoids is-a
SuperClass of Acetaminophen).

We have used the classification tag in the DrugBank database to construct 2 trees
(one for each Kingdom) of drugs) of 6 levels (depth equals to 5) which would connect the
drugs in the database through undirected edges. Two different cases were contemplated:
unweighted and weighted graphs.

We compute the distance between every pair of drugs as the length of the shortest
path between them for two different cases: unweighted and weighted edges. As said in
Section 1, we have used Leacock and Chodorow measure, Eq. (1).

4.3. Molecular Similarity

In principle, molecules that are structurally similar are likely to have similar properties.
Thus, measures of structural similarity play an important role in cheminformatics for
applications such as similarity searching, database clustering and molecular diversity
analysis.

The main elements of any similarity measure based on Molecular Structure are:

• Representation or Descriptor. It is used to characterize the two molecules that
are being compared. Among all the possible descriptors we use the fingerprints.

• Weighting Scheme. It is used to reflect the relative importance of different parts
of the representation. No weights are used in this project.

• Similarity Coefficient. It is used to quantify the degree of resemblance between
two appropriately weighted structural representations. In our case, we use the
Tanimoto (Jaccard) Coefficient.

In our approach, we first calculate the fingerprints of each drug, using the informa-
tion about the Molecular Structure which DrugBank contains. Although molecular de-
scription can be obtained in two or three dimensions, we used 2D fingerprints since the
number of drugs with 3D information is limited in DrugBank and actually, even though
it does make a different, there is not any instance of 3D representation as well established
as the fingerprints in the case of 2D representations [17]. In this work, two of the most
well-known types of fingerprints: MACCS and ECFPs have been used. Using the finger-
prints, we compute the similarity among all of them using the Tanimoto Coefficient. The
computation of the Tanimoto Coefficient for two binary vectors (a and b) of length k is
defined as:

∑
k
j=1 a j×b j

(∑k
j=1 a2

j +∑
k
j=1 b2

j −∑
k
j=1 a j×b j)

(1)

4.4. Evaluation

In order to evaluate the goodness of the three approaches to compute distance measures
between drugs, we have performed two different evaluations: Clustering and Ground
Truth based.
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4.4.1. Clustering

Similarity values were used to cluster the drugs into groups using clustering. The per-
formance of the clustering is analyzed comparing the obtained clusters against classifi-
cation of drugs which serves as reference and is provided by the well known ATC Code
Classification.

Drugs were clustered using Spectral Clustering, which is based on the use of the
spectrum (eigenvalues) of the similarity matrix of the data to perform dimensionality
reduction before clustering in fewer dimensions. One drawback or limitation of this sort
of clustering is that it is necessary to know in advance the number of clusters.

The Anatomical Therapeutic Chemical (ATC) Classification System is used for the
classification of active ingredients of drugs according to the organ or system on which
they act and their therapeutic, pharmacological and chemical properties.

Each drug has associated at least one ATC Code which classifies all the drugs into
different groups. Every ATC Code includes 7 alphanumeric characters which represent
5 different levels into the taxonomy or classification. This is to say, the first level can be
understood as a subclass of ’Drug’, which divides the drugs into 14 groups, the second
level includes the subclasses of all the 14 previous groups, the same applies for the next
levels. For instance, we analyze the ATC Code of ’Furosemide’ (C03CA01) level by
level:

• First level: It indicates the anatomical main group and consists of one letter, there
are 14 main groups, e.g. C Cardiovascular System

• Second level: the therapeutic subgroup and consists of two digits, e.g. C03 Di-
uretics.

• Third level: the therapeutic/pharmacological subgroup and consists of one letter,
e.g. C03C High-ceiling diuretics.

• Fourth level: the chemical/therapeutic/pharmacological subgroup and consists of
one letter, e.g. C03CA Sulfonamides.

• Fifth level: the chemical substance and consists of two digits, e.g. C03CA01
Furosemide.

For simplicity, we have decided to use fourteen as the number of clusters, the same
number of categories of the first level of the ATC Code.

4.4.2. Ground Truth

The external (direct) evaluation consisted of comparing the computed similarities values
with the degree of similarity between 100 pairs of drugs which were annotated by ex-
perts. That annotated data has been taken from [18]. Specifically, the ground truth was
built using the opinion of 143 experts, who provided Yes/No decisions on a set of 100
DrugBank V3.0 molecule-pairs. Experts were asked to answer with Yes/No to the ques-
tion: Are this pair of molecules similar?. The answers were collected and a distribution
of Yes/No answers was computed. In this project, we use the proportion (percentage) of
’Yes’ answers as degree of similarity. Of course, the reader should note that the experts
were not asked about the degree of similarity.

In order to evaluate how our similarity measures are related to the ground truth
values, we have studied three different dimensions:
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• Order. We order the pairs by the value of their similarity in both cases, the list
annotated by the experts and the one with our similarity measures. The correlation
between both ordered lists is studied using Kendall’s Tau Correlation.

• Value. The correlation between the value of the two lists (ground truth and com-
puted in this project) is studied using Pearson’s Correlation.

• Threshold. We have selected a threshold to classify the pairs of drugs into two
different categories: similar and non-similar. If their similarity value is greater
than the threshold, then, the drugs are similar. The threshold we have chosen is
0.85. The reason is because one of our similarity measures, the Tanimoto Coeffi-
cient, is considered relevant from that value. Then, we compute the precision and
the recall of the classification process.

5. Experiments

Three different similarity measures between drugs have been implemented using Python
and computed over DrugBank. The evaluation of all these measures have been done fol-
lowing the process explained in Section 4.4. All of this work was done inside of the
framework of a master thesis[19], which could be read for more detailed information
about the obtained results. In this paper, we just show the result of two similarity mea-
sures, which correspond to the best performance in each of the two evaluations. On the
one hand, the best results for the clustering has been obtained for the textual based simi-
larity. On the other hand, the best performance of our similarities against the ground truth
appeared during the molecular structure based similarity.

5.1. Evaluation results: Clustering

Always that it is available a reference cluster to compare with, the performance of a
clustering can be studied using the measure of Purity. In our case, we have that cluster
to compare with (ATC Code). However, the results are not really good so we decided not
analyze them using the value of Purity but just do it visually, using the distribution of the
ATC Code of the clustered drugs showed in the histogram of each cluster. This analysis
is divided into three different groups of obtained clusters:

• Clusters in which the most common ATC Code represents a good percentage of
the total number of occurrences of the ATC Code within the complete set of used
data. This could be equivalent to the notion of Purity, meaning, how good we
are grouping in the same cluster all instances of drugs with a certain ATC Code.
There are some clusters which show this behavior though, the best instance is
shown in Figure 1. As we see, from the total number of instances of the ATC
Code ’C’ (a), we have been able to capture around the 75% in the cluster 0 (b).
Thus, our similarity measures can be considered as good.

• Clusters in which the most common ATC Code appears clearly more times within
the cluster (clearly predominant) than the rest of ATC Codes included in the clus-
ter. Even though it is not exactly the same, this is somehow related to the notion of
Purity. There are several clusters which show this characteristics, however, here
we show one of the examples (see Figure 2). As we can see, in this cluster (num-
ber 3), the most predominant ATC Code, ’A’, is clearly predominant over the rest
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(a) Total Distribution of ATC Codes. (b) Distribution of Cluster 0.

Figure 1. Total real distribution of the ATC Codes for the drugs used in the text similarity evaluation (a) and
distribution of one of the obtained clusters (b).

.

Figure 2. Cluster obtained during the textual based experiment. ATC Code ’A’ is clearly predominant over the
rest.

of ATC Codes, so we can say that this cluster corresponds to a cluster with drugs
with ATC Code ’A’. Thus, our similarity measures are good.

• Clusters which are a bit meaningless for us because either they cannot be included
in one of the previous cases (e.g. there is not a clear predominant ATC Code
within the cluster) or because the number of drugs within the cluster is too small.

5.2. Evaluation results: Ground Truth

As stated before, we have computed two different similarity matrices for the Molecular
Structure based experiment: one with MACCS fingerprints and another one with ECFP
fingerprints. In the Table 1, the results for this evaluation are shown.

The best result is clearly the case in which MACCS fingerprints are used, since the
values are always better. Two comments are worth for this experiment. On the one hand,
the result is quite better than in the case of using textual and taxonomic information be-
cause of two reasons: we used as threshold 0.85, the value Tanimoto Coefficient (similar-
ity used here) is relevant from and because the way in which the ground truth was built
(experts used the molecular structure of the drugs). On the other hand, we can claim that
there is not correlation between the inferred rank by using our similarity and the ground
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Sort of Fingerprint ECFP MACCS

Pairs in ground truth 97 97

Pairs in computed similarity 96 96

Kendall’s τ -0.0404 0.0601

Pearson’s Correlation 0.8886 0.9186

Accuracy 0.7708 0.8854

Recall 0.12 0.76
Table 1. Direct Evaluation against a ground truth of the Molecular Based Similarity

truth, this is true for the three experiments. A possible reason is that experts were not
asked about which degree of similarity have those drugs, neither they were asked to say
how similar are two drugs in comparison to another two other ones.

6. Conclusions

Distance measures between medical entities are known to be important for many NLP
tasks. Computing distances between drugs is specially challenging due to the different
facets implied in different tasks. For instance, in text mining applications, textual ap-
proaches seem to be the most appropriate, for more semantic-based applications, as QA
or Linguistic Inference, taxonomic approaches seem to be better, while for drug repo-
sition molecular approaches are the most likely. Three different similarity measurement
over drugs from DrugBank have been implemented: textual, taxonomic and molecular.
To our knowledge there is no other work which includes these three measures within
the same framework. A evaluation of the implemented similarities has been performed
by means of both indirect (Clustering) and direct (Ground Truth) evaluation. All the im-
plemented code is shared as open source code under MIT License on GitHub, which
leads to the main contribution of this work, since our similarities could be used by other
researchers to perform tasks as the ones proposed in Section 2.

The Clustering evaluation has provided lights and shadows, while in some cases we
have been able to cluster properly the drugs based on their ATC Codes, we have not in
several cases. This does not strongly implies our similarity measures are not good. Spec-
tral Clustering, used in this work, and graph-based semi-supervised learning algorithms,
in general, are well known to be sensitive to how graphs are constructed from data. In
particular if the data has proximal and unbalanced clusters these algorithms can lead to
poor performance.

On the other hand, some promising results have been found in the evaluation based
on the ground truth, specially, for the similarity based on Molecular Structure. Never-
theless, the results are not definitive, a need for a larger ground truth is clear. Of course,
we have not found a larger one on the literature, so the only solution would be to build
one, which implies the help of experts. We also claim that there is not correlation be-
tween the inferred rank by using our similarity and the ground truth, this is true for the
three experiments. A possible reason is that experts were not asked about which degree
of similarity have those drugs, neither they were asked to say how similar are two drugs
in comparison to another two other ones.

Considering the evaluation process, we claim that there is still work to do on im-
proving our similarity measures so that they could be more valuable for the research
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community so that they could become widely used. However, this work has shown we
are going in the right direction.
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