
Journal Title 1 (2016) 1–5 1
IOS Press

Ontology Based Design, Control and
Programming of Modular Robots
Francisco Ramos a,*,Andrés S. Vázquez a,Raúl Fernández a and Alberto Olivares-Alarcos a.
a School of Industrial Engineering, University of Castilla-La Mancha, Avda. Camilo José Cela, 3, 13071 Ciudad
Real, Spain
E-mails: Francisco.Ramos@uclm.es, AndresS.Vazquez@uclm.es, Raul.Fernandez@uclm.es,
Alberto.Olivares@uclm.es

Abstract. This work presents a proof of concept for an end-to-end process for the agile design, control and programming
of robots. The user selects a set of abilities for the desired robot, and the system automatically generates the robot structure
and the controllers needed for the high level programming of the robot. This process relies on two pivotal concepts for our
approach: ontologies and modular robots. An ontology (ADROn), constructed upon the IEEE Standard Ontologies for Robotics
and Automation (ORA), is used by an intelligent system to relate the robot types with the requested set of abilities. Then,
a parameterized design process generates the passive components (e.g. links) and selects the active modules (e.g. actuators)
from a collection of 3D printable, modular robotic components (ParMoR). Finally, the controllers, generated as ROS services,
are interfaced with a visual programming language, Bitbloq, suitable for novice users. Examples of the generation process of
different types of robots (wheeled, snake, humanoid, hexapods) are detailed. The process is presented as an educational platform
for the teaching of robotics, while the applicability to other fields and the advantages of this methodology are also discussed in
the paper.

Keywords: Modular robotics, Ontologies, Agile robotics, ROS, BitBloq

1. Introduction

Nowadays, robotic paradigms are changing and,
with them, the industry. Until now, the predomi-
nant model for automated robotic processes has been
a highly-specialized robotic workcell where robots
are chosen depending on task specifications, such as
manipulability, reachability or payload. End-effector
changing and robot reprogramming allows compa-
nies to reuse robots giving some flexibility to work-
cells. However, this flexibility is limited mainly by
two factors that are approached in this work: difficulty
for software reprogramming and hardware reusability.
These factors have made robots principally suitable for

*Corresponding author. E-mail: Francisco.Ramos@uclm.es.
This work has been supported by Mundo Reader S.L. and the CDTI
under expedient IDI-20150289: BOTBLOQ: An Integral Ecosystem
for the design, manufacturing and programming of Do-It-Yourself
robots.

big companies with long term products which really
compensate for the high cost of robot installation. We
identify both software reprogramming and hardware
reusability as key aspects for agile robotics [1, 2].

Robot reprogramming is evolving with the new
paradigm of collaborative robots, wherein robots,
thanks to new programming and control methods, can
operate alongside the production personnel in dynamic
or semi-structured human environments. Some repre-
sentative research works can be found in [3, 4]. In
the last few years, collaborative robots have jumped
to real industry facilities. Some examples are Bax-
ter and Sawyer of Rethink Robotics [5], LBR iiwa of
KUKA [6], Yumi of ABB [7] and UR series of Uni-
versal Robots [8].

Robot reusability has also a hardware dimension.
On many occasions the same robot configuration can-
not be used for two different tasks (e.g. reachability,
payload). The paradigm of Reconfigurable Modular

0000-0000/16/$00.00 c© 2016 – IOS Press and the authors. All rights reserved

mailto:Francisco.Ramos@uclm.es
mailto:AndresS.Vazquez@uclm.es
mailto:Raul.Fernandez@uclm.es
mailto:Alberto.Olivares@uclm.es
mailto:Francisco.Ramos@uclm.es

2 F. Ramos et al. / Ontology Based Design, Control and Programming of Modular Robots

Manipulators, RMMs, which have also rapidly moved
from research [9, 10] to industry [11], is the exponent
of robot reusability. Some of the challenges of RMMs
are the automatic generation of kinematics, dynamics
and control [12] and also the mapping between tasks
and manipulator configurations [13].

This mapping must answer the following question:
how can the knowledge that relates tasks to configura-
tions be generated in a synthetic manner? To achieve
this, we propose the use of ontologies, widely applied
to expert systems for different applications such as
medical advisory [14], and lately drawing some atten-
tion in robotics as well [15, 16]. They would allow the
inference of this mapping by settling adequately the
robotic domain knowledge.

In this work we deal with both reprogramming and
hardware reusability within the same framework: our
system, using task specifications, infers robot designs
that can be built from reusable robot modules and, at
the same time, it generates controllers and easy pro-
gramming blocks that can be used by non specialized
personnel. Two main aspects define our framework: a
parametrized modular robot architecture and an ontol-
ogy based agent.

Let us clarify that this work is a proof-of-concept.
The scope of this work could be as extensive as de-
sired: industrial robots plus household robots plus en-
tertainment robots plus... However, we do not claim to
be able to create a specific robot for any of the (ar-
guably infinite) possible tasks achievable by any kind
of robot. We aim to present the process and we focus
on the educational aspects of robotics, in which we try
to smartly bring robotics design closer to non-qualified
users, while giving an overview of the applicability to
other fields.

2. Why are these the right tools?

In this section we justify the selection of the two
main tools of our setup, that is, an ontology and
a parametrized modular architecture, explaining how
they are beneficial to the co-design of robots and mo-
tion controllers in an automatic manner.

2.1. Why ontologies?

Ontologies, in a computational sense, are formal
and explicit specifications of conceptualizations [17]
and provide enough concepts and relations to articu-
late models of specific situations in a given domain.

However, they do not simply represent but also can be
used to generate knowledge: if an ontology is correctly
designed, we do not need to specify all facts explicitly,
but we can also use inference methods to extract im-
plicit knowledge. For instance, if we define the class
HumanoidRobot as a robot which includes two arms
and two legs, when we instantiate that class we do not
need to specify that our instance has two arms and two
legs.

When conceiving any sort of design process, it is
important to take into account how purpose/function-
ality, possible implementations and resources interact.
In [18], Censi describes a theory to deal with co-design
problems in a principled way. In that work a design
problem is defined as a tuple of function space, im-
plementation space, and a resources space, plus the
two maps that relate implementations to functions and
implementation to resources. It also shows the exist-
ing relationship between functionalities, structures and
resources. Either if it comes from designers or from
users, any design is created under a set of specifica-
tions that the final system must fulfill. At the same
time, we usually have some restrictions imposed by
the finite amount of available resources. Therefore, we
could just consider a limited number of possible im-
plementations which fit both, requisites and resources.
When we apply this idea to the robotic domain, if user
requirements are understood as a list of capabilities
that a robot must possess, the possible implementa-
tions of the structure of a robot rely on, among others,
this list of capabilities. However, [18] lacks the use of
ontologies that could help to represent and exploit all
knowledge related to the design.

In fact, given one of the sides of the relationship be-
tween robot capabilities and the physical structure of
the robot, a knowledge system (knowledge base plus
reasoner) could infer the existence of the other one and
vice versa. For instance, if there exists a relationship of
necessity between having a gripper (physical device)
and the capability of grasping, information could be in-
ferred bidirectionally: on the one hand if the robot pos-
sesses a gripper, it can grasp objects; and on the other
hand if a robot can grasp, it must possess a gripper. In
both cases, an ontology seems to be the perfect tool to
use during the inference process.

Finally, the knowledge behind any design process
must bring together the theoretical knowledge related
to the specific domain and the common knowledge ex-
tracted from experience. If we want machines to be
able to design robots as humans do, or even better, it is
compulsory to comprehend the human design process

F. Ramos et al. / Ontology Based Design, Control and Programming of Modular Robots 3

and then to represent that knowledge in a machine-
friendly format. Our approach, generic as it is, relies
on this issue. Ontologies [17] are the most well known
method to represent knowledge in current literature,
existing several successful examples [19, 20], and it
is being standardized in the field of Robotics and Au-
tomation (R&A) [16] for this very reason. Based on
these premises, an ontology proves an excellent choice
to store our knowledge base.

2.2. Why modular robotics?

Robots are usually designed manually, which makes
this process very expensive, time consuming and also
quite difficult to adapt to different scenarios. For this
reason many works deal with the automatic design of
both robots and their controllers, often based on mod-
ular design approaches [21].

Modular robots are widely used in different do-
mains such as education, research or industry (see [22–
24] for complete reviews). There are several factors
that determine whether a modular robot is suitable for
a specific domain. In some cases the same modular
platform is used for both education and research do-
mains but rarely for the industry too. This is usually
achieved by using different programming languages:
simple ones for education (usually visual languages
with blocks like Lego Mindstorms or Scratch, used
for example with Cubelets and MOSS robots from
ModRobotics) and more advanced for research appli-
cations (like Robotis Bioloid which have a graphical
C++ based programming tool called RobPlus Task). In
the industry, companies have their own languages like
RAPID (ABB) or VAL 3 (Stäubli). For the specific
case of collaborative robots, programming is usually
done following a lead-through methodology, like Arti-
Minds in Universal Robots, Intera in Rethink Robotics
or Sunrise Workbench in KUKA robots.

It is important to indicate that just because a mod-
ular platform has an easy programming language (e.g.
Blocky or Scratch) it does not mean that every robot
created with that platform will be easy to program.
Lead-through programming can also be a very slow
technique and it is not appropriate in some cases. For
example, using this method for the movement planners
of complex robots (e.g. humanoids) can be tedious and
sometimes is not powerful enough (e.g. the walking of
a humanoid robot can be statically programmed using
lead-through techniques but not dynamically, which
means that it will fall down in then presence of exter-
nal forces). This makes complex robot programming

out of the reach of novice users [25]. That is why many
modular platforms for education include previously
designed robots with movement planners already pro-
grammed. Some examples are the Bioloid humanoid
robot of Robotis, the quadruped robot of Fable [26] or
the JD humanoid of EZ-Robot.

This impracticality of robot programming restricts
the freedom of users in creating new robots or even
modifying existing ones. This leads to the conclusion
that it is necessary to find a way that helps novice
users to program their complex robots, e.g. obtain-
ing planners automatically. At this point the concept
of co-design as the simultaneous design of mecha-
nisms and their controllers becomes relevant. For in-
stance, [27] describes a method to simultaneously op-
timize quadruped robot gaits and the mechanism de-
sign parameters. They start from biologically inspired
good candidates which are later optimized using an
evolutionary algorithm (EA). Another similar work
is presented in [28], where the authors introduce a
method for co-optimizing robot physical designs and
their motion using a gradient-based optimization ap-
proach. Though the aim of our work is similar, we
focus on the way that the ontology can extract use-
ful information for the structure and the control de-
signer rather than the optimization problem. In fact, we
only use optimization solvers to minimize link mate-
rial as explained in Section 4.2.2. For both the body
and the controller design we use a recursive algorithm
that, starting from a parametric kinematic configura-
tion, finds the best link dimensions and actuator char-
acteristics that meet user requirements.

A work, very similar to our approach, that deals
with design selection is [29]. In this work the authors
present an end-to-end system that integrates the low-
level design generation, and a high-level mission plan-
ning with their own modular robot architecture. We
also present an end-to-end approach but with the dif-
ference that the robot is automatically designed while
in the referenced work they provide a library to help
users with the manual design. Another end-to-end ef-
fort that goes from task specification to implemen-
tation of robots is developed in [30]. It presents a
knowledge transfer framework, GTax, which aims to
simplify robot programming and enables transfer of
knowledge between. This framework is developed for
manufacturing robots and, hence, it addresses practi-
cal problems for industrial applications such as perfor-
mance requirements. Nevertheless, our approach tries
to span a wider robotic domain and, to date, it does not
account for those requirements.

4 F. Ramos et al. / Ontology Based Design, Control and Programming of Modular Robots

Several of the most well-known approaches to au-
tomatic design of robots come from the field of evo-
lutionary robotics. This happens because EAs can
come up with solutions which humans could not imag-
ine [31]. An advanced development of EA, Memetic
Computing techniques, are hybrid EAs that employ
deterministic local search in the evolutionary cycle to
solve optimization problems, outperforming each tech-
nique separately. These techniques can be applied for
example to the control wheeled robots [32]. However,
EAs are still at the research stage, which makes them
unsuitable for education or other domains like indus-
try.

In our approach we propose a Parametric Mod-
ular Robotic (ParMoR) platform that can be used
for education and research and can be considered as
a demonstrator for other domains like industry. Our
framework helps users to develop and program com-
plex robots (see Section 4). Similar to other plat-
forms, we propose an intuitive, visual programming
language (Bitbloq [33]) for novice users, for example
inexperienced personnel, and more advanced program-
ing (Python/C++ with ROS) for researchers or experi-
enced users.

The main difference with other modular platforms,
shown in Table 1, is that ours does not limit users
to several specific robots with previously programmed
controllers. In our approach users have (theoretically)
an infinite number of complex robots available, with
their respective controllers helping with the repro-
gramming (i.e. low level details are transparent to the
users). These robots and controllers are automatically
generated from parametric configurations.

Other requirements we have imposed on our modu-
lar robot approach are:

– Open hardware/software modular platform.
– Easy module building with 3D printing and acce-

sible electronics.
– Easy and robust robot assembly.
– Possibility to build any robot configuration.
– Different programming languages for different

level users.
– Possibility to program any complex robot, regard-

less of the user level.

3. Automatic Design of Robots Ontology

The Automatic Design of Robots Ontology (ADROn)
defines concepts and relations that are to be used for

Table 1
Modular Robotics Platforms used in both education and research

L
eg

o
E

V
3

E
z-

R
ob

ot

M
O

SS

B
io

lo
id

Fa
bl

e

Pa
rM

oR

Open Hardware/Software
architecture

X

3D printed modules sim-
ple electronic

X X X

Simple assembly robots
robust enough

X X X X

Allows build any robot
configuration

X X X X X X

Different programming
depending of user level

X X X X X X

Programming any robot
configuration, regardless
of user level

X

the automatic conceptual design/selection of robots.
ADROn has been constructed upon the IEEE Standard
Ontologies for Robotics and Automation (ORA) [16].
This standard, written in SUO-KIF1 language [34],
provides a formalism that allows to represent and rea-
son with the knowledge gathered by the experts in
the field over years of research. It is constructed upon
the Suggested Upper Merged Ontology (SUMO) [20]
which provides high level classes, such as MotionS

2

(a subclass of ProcessS) or EntityS (universal class of
individuals), and the relations between them, such as
AntisymmetricRelationS , which are, in turn, subclasses
of abstract entities. A partial, very reduced taxonomy
of SUMO will be displayed in Figure 3.

The potential of ORA has already been explored in
some cases of study [35] and it is still under develop-
ment. In fact, several Working Groups of the IEEE are
developing a suite of ontologies for different fields of
robotics [36–38]. ORA is divided into four ontologies,
whose dependences are displayed in Figure 1. They are
required to construct more specific concepts belonging
to other ontologies and consist of:

– CORA (Core Ontology for Robotics and Au-
tomation) includes the fundamental concepts in

1Standard Upper Ontology Knowledge Interchange Format is a
declarative semantics language designed for use in the authoring and
interchange of knowledge.

2Each ontology concept used in the article that do not belong
to our ontology will have a subscript to indicate the origin of the
concept: S stands for SUMO, C for CORA, X for CORAX, R for
RPARTS and P for POS.

F. Ramos et al. / Ontology Based Design, Control and Programming of Modular Robots 5

Fig. 1. Ontologies involved in the ORA Standard.

the R&A domain, such as RobotC or robotPartC ,
as well as their definitions, attributes, constraints
and relationships.

– CORAX defines concepts too general (could
be used in many other domains) to be in the
CORA ontology and needed for modeling but not
covered by SUMO. For example, a DesignX is
a proposition that idealizes the structure of an
ArtifactS .

– RPARTS provides an extensible set of roles that
specializes a robotPartC , such as robotSensingPartR,
but it does not describe the actual devices that
could play that role (e.g. ultrasoundSensor or
IMUSensor).

In its actual state, ORA does not completely match
the needs of this work. While it states several key
concepts (to our purpose) such as RobotPartC or
RobotMotionX , it lacks specific robot motions and
robotic parts that could be interrelated to obtain struc-
tural dependencies. Therefore, an extension for the
ORA ontologies is required for our automatic design
process.

In order to extend ORA, we have considered two as-
pects related to our approach which show the necessity
of that extension: the resources we use to build robots
and the proposed methodology to do it automatically.
On the one hand, we work with a modular architec-
ture of robots and, therefore, it is necessary to define
some physical concepts, which are yet to be included
in ORA, to represent ParMoR elements in our knowl-
edge system. On the other hand, our approach needs
a mapping from actions to the structural parts that are
needed to perform them. Finally, we need to define the
different types of robots that we might find depending
on the resulting design (see Section 3.3). In order to
cover all needed knowledge, several new concepts are
proposed in the following subsections, where we pro-
vide a definition in natural language, but also a formal-
ization in First Order Logic. For a better understand-
ing, we also include some code written in SUO-KIF
when needed.

Fig. 2. RobotAction declaration and relation with SUMO and CORA
concepts.

3.1. Robot actions

ADROn defines concepts regarding the actions that
a robot can perform under the class RobotAction,
which is a subclass in ProcessS and a superclass of
RobotMotionX , as shown in Figure 2. It indicates a pro-
cess in which the agent is a RobotC . Examples of Rob-
otAction are RobotAmbulating or RobotLineTracking.

3.2. Structural robot parts & Structural requirements

In CORA, robotPartC is defined as a subrelation
of partS which relates devices and robots. Intuitively,
when we think about a part of a robot, our thoughts are
more likely to consider them as physical objects than
as relations between devices and robots. Nevertheless,
as the standard states, devices are considered robot
parts while attached to a robot, but they are not inher-
ently a robot part, since they exist by themselves and,
in most cases, they can be connected to other kinds of
devices. Because of this, robotPartC is a relation and
not a physical entity.

Even though we agree with the definitions given in
the standard, we still need to represent two specific
concepts related to physical components which are not
yet covered. The main physical elements defined in
ADROn are StructuralRobotPart and Module, which
are subclasses of DeviceS and ArtifactS , respectively,
as depicted in Figure 3. Aligned with them we also in-
troduce the concept of StructuralRequirement which is
a BinaryPredicateS that links each RobotAction to the
StructuralRobotParts involved in the performance of
those actions.

Therefore, a StructuralRequirement (SR) captures
the existing relationship between a RobotAction (RA)
and the StructuralRobotPart (SRP) which plays a nec-
essary role in the action. This concept lets us infer the
necessary structural parts that a robot should have to

6 F. Ramos et al. / Ontology Based Design, Control and Programming of Modular Robots

Fig. 3. Taxonomy of the main physical concepts in ADROn (white)
and relation with SUMO (black) and CORA (gray).

fulfill the actions requested by the user. It is formalized
as follows:

∀x∃y : RA(x)⇒ S RP(y) ∧ S R(x, y)

The corresponding code written in SUO-KIF is the
following:

(instance StructuralRequirement BinaryPredicate)
(instance StructuralRequirement InheritableRelation)
(domain StructuralRequirement 1 RobotAction)
(domain StructuralRequirement 2 StructuralRobotPart)

Hence, a StructuralRequirement determines, for ex-
ample, that if a RobotC is going to grasp an object,
it needs a specific StructuralRobotPart to do it (e.g. a
robot gripper). In our ontology, RobotGrasping3 is de-
fined not only as a subclass of RobotAction but also of
GrabbingS to be consistent with the standard, which is
based on SUMO.

∀x∃y : RobotGrasping(x)⇒
RA(x) ∧ RoboticGripper(y) ∧ S R(x, y)

(subclass RobotGrasping RobotAction)
(subclass RobotGrasping Grabbing)
(=>

(instance ?GRASP RobotGrasping)
(exists (?GRIPPER)

(and
(instance ?GRIPPER RoboticGripper)
(StructuralRequirement ?GRASP ?GRIPPER))))

3We use “RobotGrasping” in our ontology instead of “Robot-
Grabbing”, which would be consistent with SUMO class, because
the first term is widely used in the domain, and both are synonyms.

Continuing with the other new concepts, on the one
hand, an instance of StructuralRobotPart represents
any Module or set of Modules that is a robotPartC (rP)
of a RobotC and plays an essential role in a specific ac-
tion of a robot. For example, RobotLeg is a part of the
structure of a robot that is requested to ambulate (ei-
ther to walk or to run). On the other hand, an instance
of Module will be any artifact (passive or active) which
can be included in a robot (e.g. IMU sensors, servomo-
tors, links, etc.). Below, a formalization of those con-
cepts is given:

∀x∃y∃z : S RP(x)⇒
Device(x) ∧ RA(y) ∧ S R(y, x) ∧ Robot(z) ∧ rP(x, z)

∀x∃y∃z : Module(x)⇒
Arti f act(x)∧S RP(y)∧ part(x, y)∧Robot(z)∧rP(y, z)

Again, the code implemented in SUO-KIF to define
those concepts in our ontology is as follows:

(subclass StructuralRobotPart Device)
(=>

(instance ?STRUCTURE StructuralRobotPart)
(exists (?ROBOT ?ACTION)

(and
(instance ?ACTION RobotAction)
(StructuralRequirement ?ACTION ?STRUCTURE)
(instance ?ROBOT Robot)
(robotPart ?STRUCTURE ?ROBOT))))

(subclass Module Artifact)
(=>

(instance ?MODULE Module)
(exists (?ROBOT ?STRUCTURE)

(and
(instance ?ROBOT Robot)
(instance ?STRUCTURE StructuralRobotPart)
(robotPart ?STRUCTURE ?ROBOT)
(part ?MODULE ?STRUCTURE))))

Examples of subclasses of StructuralRobotPart are
EndEffector, RobotLimb or RobotTrunk.

3.3. Robot types

ADROn also defines a number of robot types such
as HumanoidRobot which are subclasses of RobotC ac-
cording to the taxonomy outlined in Figure 4.

Each of these robots consists of one or more Struc-
turalRobotPart depending on their definition. For ex-
ample, the following code defines a HumanoidRobot
subclass consisting of two RobotArm and a Robot-
Trunk which are, in turn, subclasses of Structural-
RobotPart. In addition, as long as HumanoidRobot is a
subclass of BipedalRobot, it also inherits two instances
of RobotLeg. In this case we show just the code writ-
ten in SUO-KIF since the formalization in First-Order
Logic might be confusing.

F. Ramos et al. / Ontology Based Design, Control and Programming of Modular Robots 7

Fig. 4. Partial robot classification depending on the environment/lo-
comotion.

(subclass GroundRobot Robot)
(subclass LeggedRobot GroundRobot)
(subclass BipedalRobot LeggedRobot)
(=>

(instance ?rob BipedalRobot)
(exists (?leg1 ?leg2 ?trunk)

(and
(instance ?leg1 RobotLeg)
(instance ?leg2 RobotLeg)
(instance ?trunk RobotTrunk)
(robotPart ?leg1 ?rob)
(robotPart ?leg2 ?rob)
(connectedTo ?leg1 ?trunk)
(connectedTo ?leg2 ?trunk)
(robotPart ?trunk ?rob)
(not (equal (?leg1 ?leg2))))))

(subclass HumanoidRobot BipedalRobot)
(=>

(instance ?rob HumanoidRobot)
(exists (?arm1 ?arm2 ?trunk)

(and
(instance ?arm1 RobotArm)
(instance ?arm2 RobotArm)
(instance ?trunk RobotTrunk)
(robotPart ?arm1 ?rob)
(robotPart ?arm2 ?rob)
(connectedTo ?arm1 ?trunk)
(connectedTo ?arm2 ?trunk)
(robotPart ?trunk ?rob)
(not (equal (?arm1 ?arm2))))))

4. Automatic robot design system

This section gives an overview of the complete
procedure for generating completely functional robots
from (very basic) user requirements. Figure 5 shows
the process flow of the complete system. This process
is summarized as follows:

1. The user, using a software application, describes
the behavior(s) to be performed by the robot.

Fig. 5. Flow diagram of the automatic generation of robots.

2. A knowledge system, consisting of a reasoner
(Sigma [39]) and a procedure to extract relevant
information from ADROn, infers a robot base
configuration.

3. Depending on the inferred configuration, a set
of parameters/requirements are specified by the
user in order to create the physical structure.

4. The base configuration together with the user re-
quirements are passed on to the Structure genera-
tor which selects the concrete active modules and
designs passive modules according to kinematic
and dynamic considerations. According to these
modules, robot description and 3D printing files
are created.

5. Finally, the formal description of the robots is
represented in ROS using Unified Robot De-
scription Format (URDF) models and a parame-
terized controller is provided to simplify the con-
trol stage.

For example, given the behavior of grasping objects,
the automatic designer asking the ontology would se-
lect a manipulator robot and after the optimization
would obtain the link dimensions based upon a certain
rigidity. This can be related to the maximum payload
that the robot arm must be able to carry by allowing a
maximum tip deflection when performing maneuvers.

The following subsections will illustrate the process
in further detail.

8 F. Ramos et al. / Ontology Based Design, Control and Programming of Modular Robots

Fig. 6. Instances of the main concepts in ADROn related to the Robot
concept from CORA.

4.1. Ontology-based robot selection

According to ADROn, a robot consists of one or
more StructuralRobotPart and each of them consists
of, at least, one Module. Figure 6 shows: an instance
of a HumanoidRobot (subclass of RobotC); an instance
of one of its RobotLegs (subclass of StructuralRobot-
Part); and some instances of the Modules (active and
passive) that constitute the RobotLeg.

ADROn includes the definition of every module of
our modular architecture (e.g. IRProximitySensor, Ser-
vomotor, etc.) along with every action that a robot can
perform and the relationships between RobotActions
and StructuralRobotParts.

The conceptual generation of a robot is a three-
step process. First, the robot instance generator re-
ceives a set of RobotActions that the robot is required
to perform. Then the reasoner uses semantic queries
to determine the StructuralRequirements implied by
the set of actions. Subsequently, the instance generator
matches these requirements with the hardware avail-
able in the base configurations defined in ADROn. If
several matches are found, the generator asks the user
some questions inferred from the ontology to disam-
biguate the solution. Finally, the system creates the
conceptual (instance) design of a robot able to perform
those actions and passes it to the structure generator.
This process is schematized in Procedure 1.

As an example, we present now a very straightfor-
ward example of generation of a robot with the ability
of RobotWalking.

1. First, the generator user demands a robot with a
walking behavior.

2. A querying process in ADROn determines Robot-
Leg as a StructuralRequirement.

Procedure 1 Robot Instance Generation
Require: sRA← set of RobotActions

for each RobotAction in sRA do
determine StructuralRequirement

end for each
solutions← match all StructuralRequirements
while solutions.length > 1 do

generate disambiguation question
update StructuralRequirements
solutions← match all StructuralRequirements

end while
return instance of solution

3. A search through the base configurations obtains
all the matches: HumanoidRobot, Quadrupe-
dRobot and HexapodRobot.

4. Disambiguation is done by querying the ontol-
ogy about the additional capabilities that matched
robots possess. In this case, we discover that only
the HumanoidRobot has the capability of grasp-
ing so the generator asks the user “Does the robot
need to grasp?”.

5. The answer is positive, so the generator deter-
mines RobotGripper as a new StructuralRequire-
ment.

6. It searches again through previous matches and
determines that the appropriate robot is a Hu-
manoidRobot.

7. The generator provides a dimensionless base
configuration of a HumanoidRobot. The concep-
tual design is over and the parameterization pro-
cess begins.

Actually, this methodology has its flaws, maybe the
most important is what to do when several robots have
exactly the same capabilities (e.g. QuadrupedRobot
and HexapodRobot). In future versions we will face
this problem and try to solve it with a more complex
process, for instance, we could differentiate the two
robots cited before by knowing that with six legs our
robot could walk more easily over rough terrain, as its
static stability is higher. However these concepts are
yet to be implemented in ADROn.

4.2. Robot structure generation

Once the base configuration has been determined,
the generation of the physical structure begins. The
base configuration together with the user requirements
(e.g. robot speed, payload, workspace) are passed on
to the automatic designer which selects the concrete

F. Ramos et al. / Ontology Based Design, Control and Programming of Modular Robots 9

active modules and designs passive modules for the re-
quested robot. Figure 7 depicts the flow of the Struc-
ture Generator block of Figure 5.

Fig. 7. Flow diagram of the structure generation of robots.

We can see three main components: the dynamic
analysis, the robot description and the 3D modules
generation. Also a database provides the definition of
all active modules and the templates of the passive
modules to the components. These will be detailed in
subsequent sections.

4.2.1. Dynamic analysis
The user variables are combined with the pool of

modules available in ParMoR to dimension the robot
passive modules and select the adequate active mod-
ules.

Some of the user requirements might condition the
physical structure of the robot due to the restrictions
they impose. Therefore, a study of the robot dynamics,
specially in a worst case scenario, is needed to guar-
antee proper functioning of the robot. This study de-
termines passive modules dimensions and torque de-
mands for the actuators of each joint. The process iter-
ative and follows these steps:

1. A tentative value for links lengths is assumed de-
pending on desired workspace and dimensions of
the active modules that must fit in the structure.

2. The recursive Newton-Euler method [40] is ap-
plied to the kinematic chains of the different base
configurations in order to calculate the torques
that must be exerted at each joint to actuate
the robot as specified by user requirements, and
the forces and torques endured by each link.

This evaluation will strongly depend on user re-
quirements (e.g. payload) and ParMoR modules
(weights, inertias, dimensions...).

3. Active modules fulfilling the calculated require-
ments are chosen from the ParMoR architecture.

4. Passive modules are designed following a mate-
rial optimization process and a stress analysis de-
tailed in following subsections.

5. The process is restarted if there are no active
modules fulfilling the requirements or the passive
modules design gives an unfeasible solution.

Figure 8 displays an example of different designs
obtained with different user requirements. As can be
seen, even though both robots show the same abstract
structure, (3 dof manipulator), the Structure Generator
determined a different geometry for passive modules
(larger workspace) and different active modules (be-
cause of higher inertial forces).

Fig. 8. Robot A. (left) Two high-torque actuators and a middle–
torque actuator. Robot B.(right) One high-torque module and two
middle-torque actuators.

4.2.2. Passive modules optimization
Once the lengths of the links have been calcu-

lated, a material optimization process begins. The
parametrization process must avoid bending of links
over a given limit while reaching the workspace re-
quested by user requirements. Additionally, because
we are manufacturing our modules with a 3D printer,
we intend to use the minimum amount of material that
guarantees both aims.

Hence, an optimization problem arises, which aims
to minimize solid volume of printable links given some
values, such as the length, geometric restrictions de-
pending on the shape of the cross-section, and a min-

10 F. Ramos et al. / Ontology Based Design, Control and Programming of Modular Robots

imum requested rigidity to avoid bending, which can
be related to maximum payload of manipulator.

Cylindrical hollow beams have been considered for
the robot links. The optimization problem for them is
stated as follows:

minimize
L,r2,r1

f = L(r22 − r21)

subject to r2 ≤ r2max r2 − r1 ≥ e

Lmin ≤ L ≤ Lmax (r42 − r41)L−3 ≥ K̃0,

(1)

where L is the length of the link, r1 and r2 are in-
ner and outer radii, e is the minimum thickness al-
lowed, and K̃0 is a constant related to rigidity and
dependent on Young’s modulus, cross-section inertia
and link length. The solution to this nonlinear opti-
mization problem, (obtained using the Karush-Kuhn-
Tucker method [41]), tends to build up material to-
wards the external radius r2, increasing the cross-
section inertia. The dimensions of the optimized pas-
sive links of the manipulator are given by

r2 = r2max, r1 =
4

√
r42max − K̃0, L = Lmin

f = πL
(

r22max −
√

r42max − K̃0

)
.

(2)

This solution is only valid if r2−r1 ≥ e (as outlined
in Figure 9). Otherwise, we set r2−r1 = e and radii are
obtained from solving the following equations system

r2 − r1 = e

r42 − r41 = K̃0.
(3)

r2max

r2max

r2max r2

r1min

r1

r1

r1

r2-r1>e

r2-r1<e
r2-r1=e

Fig. 9. Solutions depending on thickness restriction

4.2.3. Stress analysis
Each link of the robot has been analyzed as a beam

clamped on one end with an external force and torque
applied at the free end. These loads include inertial
forces/torques due to the movement of the rest of the
links. The effect of gravity has been assumed to be
concentrated on both ends and equally divided. The
following hypothesis have been assumed:

– Highest stress is presented at the clamped end.
Hence, this section will be analyzed for having
the highest risk of fracture.

– In the clamped end, slope and deflection are zero.
– Deflection in the free end is maximum and pro-

portional to applied force.

Relation between clamped end stress and dynamic
loads applied to the link has been solved from the stiff-
ness equation given by:

f = K× u (4)

where f represents the vector of characteristic forces
and torques, u is the vector of displacements, and K is
the stiffness matrix.

The beam has been discretized in a single beam el-
ement with two nodes (one in each end), each of them
with 3 degrees of freedom.

With this equation, we can calculate the loads in the
clamped end, which allows us to perform stress analy-
sis and evaluate the possibility of a fracture in the link.

Additionally, as the geometric discontinuities cause
a local increase in stress, the perpendicular union be-
tween the hollow cylinder and the dovetail faces gen-
erates a stress concentrator. This effect has been alle-
viated using fillets (see Figure 10).

4.2.4. ROS robot description
Each type of robot has a predefined script, writ-

ten in Xacro language, that automatizes, once the
parametrization is finished, the URDF file generation.
Xacro is an XML macro language that simplifies the
creation of URDF files (usually a tedious task) with
a template and a set of values for its parameters. The
use of these files allow the automation of the controller
generation, as will be detailed in Section 4.3.

4.2.5. 3D printable files
A set of functions is available in OpenSCAD for cre-

ating the Stereo Litography (STL) files of the newly
designed passive modules. In Figure 10 we can see
different passive modules of beam type. They consist
of two dovetail faces, a hollow cylinder and inner and
outer fillets between faces and cylinder.

F. Ramos et al. / Ontology Based Design, Control and Programming of Modular Robots 11

Fig. 10. Different links created from the same OpenSCAD function

4.3. Co-design of motion controllers and robot
structures from parametric kinematic models

The last step in the automatic generation of func-
tional robots is the creation of a controller for perform-
ing the behaviors requested by the user. This controller
will also facilitate the robot programming, shielding
the users from having to write low-level motion plan-
ners. The problem or controller design will be ad-
dressed as a part of a co-design problem of mecha-
nisms and motion controllers. For this reason, the par-
ticular aspects of mechanism design for each robot will
be also summarized in the following subsections, in-
troducing the parametric kinematic modeling for each
kind of robot and how it is used to generate motion
controllers As it is seen in Figure 11 two parameters
are sent to the controller generator: the robot design
in URDF and the robot behaviors list described by the
ontology (e.g. the user could only have specified the
behavior walking but there are more behaviors neces-
sary to control a humanoid robot like running or climb-
ing). With this information, and as seen in Figure 11,
the controller generator follows these steps:

1. Parametric planners for each behavior, based
on analytical expressions, are selected from a
database.

2. These planners are numerically parametrized us-
ing the information of the URDF.

3. A ROS service is created with each planner. An
experienced user could use at this time the ROS
API to program the robot.

4. Bitbloq blocks (i.e. planner functions) are gener-
ated for each service of ROS. These blocks can
be used by novice users like k-12 students.

The outcome of this process is a set of ROS services
that can be used by experienced users or that can be
converted to blocks for visual programming.

4.3.1. Parametric controller for wheeled robots
Our automatic designer includes two configurations

of wheeled robots : differential and skid-steer. The ra-

Fig. 11. Automatic Control Generator.

Fig. 12. Real robots generated according to different user specifica-
tions.

dius r of the wheels and the distance L1, L2 between
them are the customizable parameters (see Figure 12).
Depending on user specification (i.e. robot speed, pay-
load and load area) our automatic designer will choose
one of the configurations: differential for minimum
payload and load area, and skid-steer for bigger pay-
loads and load areas. L1 and L2 are automatically ad-
justed to meet load area specifications. Wheel radius
r together with the type of actuators (active modules)
are calculated through a dynamic analysis for veloci-
ties and torques (see Figure 12 for some examples).

The motion controllers for these robots are based
on the well known analytical solution for differential
drive and skid-steer mobile robot kinematics [40]. For
example, the movement of a differential mobile robot
of Figure 13 can be defined with Eq. 5 and Eq. 6. As
is seen, this movement will directly be conditioned by
parameters l1 (distance between wheels) and r (wheel
radius).

ω =
rq̇r − rq̇l

l
(5)

12 F. Ramos et al. / Ontology Based Design, Control and Programming of Modular Robots

qr

θ

ω

ql

CIR

R

r

.

.

l1
2

Fig. 13. Kinematic analysis of a differential robot.

R =
l (rq̇r + rq̇l)

2 (rq̇r − rq̇l)
(6)

We have used the diff_drive_controller ROS pack-
age, which includes the aforementioned differential
drive and skid-steer kinematics to automatically gen-
erate wheeled robot motion controllers. Our robot
parametrization (i.e. number of wheels, robot dimen-
sions L1, L2 and wheel radius r) is included in the
URDF files using Xacro, which are used by the pack-
age to generate effective low level controllers that can
be used by other high level existing controllers in ROS
like the Navigation stack.

4.3.2. Parametric controller for snake robots
Our automatic designer includes a base configura-

tion of snake robots in which the modules are chained
in two different orientations (vertical and horizontal)
shifted by 90o. The number M of modules is the pa-
rameter that the automatic designer will adjust de-
pending on user specifications (i.e. type of move-
ment required to the snake robot). In order to gener-
ate statically stable gaits [42], the designer, as shown
in Figure 14, will generate snakes with M = 3 for
rolling, M = 5 for rectilinear locomotion, M = 6 for
sidewinding, M = 8 for rotating and M = 14 for cir-
cular paths. Figure 15 shows a real snake robot with
M = 6 (i.e. it can roll, move forward and in sideways).

We have written a ROS motion controller which
uses waves generators [43] for vertical ϕvi(φ) and hor-
izontal modules (see Eq. 7) to produce the different
movements . As is seen in Eq. 8,9, the design parame-
ter M is included. The rest of parameters are tuned ac-
cording to the desired gait in such a way that the condi-
tions of stability are satisfied [44]. Same as with other
robots, the kinematic model (which includes parameter
M) is represented as a URDF file using Xacro.

ϕvi(φ) = Avsin (φ+ (i− 1)∆φv)

ϕhi(φ) = Ahsin (φ+ (i− 1)∆φh + ∆φvh) (7)

M3. Rolling

M5. Rectilinear Locomotion

M6. Sidewinding

M8. Rotating

M14. Circular Paths

Fig. 14. Different length snake robots generated with our designer.

Fig. 15. Snake robot with M = 6.

where i ∈ {1, ..., M
2 } and

Av = 2αvsin
(

2πkv

M

)
, |∆φv| =

4πkv

M
(8)

Ah = 2αhsin
(

2πkh

M

)
, |∆φh| =

4πkh

M
(9)

Discussion It is proven that snakes with fewer mod-
ules can perform similar gaits [44]. However, the mo-
tion of these snakes is less smooth than statically stable
snakes. In newer versions the automatic designer will
determine M using more parameters. For example, the
minimum M could be calculated so that a snake can
move inside a pipe with a certain diameter.

4.3.3. Parametric controller for robot manipulators
Parameterized robot manipulators generated with

our system consist of robots with same kinematic con-
figuration but with different length links and different
actuators that fulfill user specifications of workspace

F. Ramos et al. / Ontology Based Design, Control and Programming of Modular Robots 13

Link di

l1
l2
l3

aiθi

θ1

θ3

θ2+90º

1
2
3

άi

0
0

0

00

90º

Fig. 16. Kinematic Model for the 3 dof parametric manipulator

and payload. Figure 16 shows the parametric kine-
matic model of the 3 dof base manipulator where the
L1, L2 and L3 are numerically evaluated by the auto-
matic designer in order to fulfill user workspace re-
quirement as depicted in Section 4.2. This kinematic
model is included in a URDF using Xacro and them
converted into a KDL (Kinematics and Dynamics Li-
brary) model which is finally used by MoveIt! ROS
tool in order to obtain a robust motion controller of the
robot.

The low level control of the robot is carried out
through ActionLib [45] which allows the controller to
have continuous feedback of sent trajectories.

Discussion The parametric controller for this kind
of robots have been successfully tested in the Gazebo
simulator [46] and also with three real robots of dif-
ferent size (see Figure 17). These robots and their
controllers fulfill user specifications of workspace and
payload but other important specifications in industry
like accuracy, dynamic response, etc. have not been
dealt with in this work.

4.3.4. Parametric controller for hexapod robots
Our automatic designer uses a parametric rectangu-

lar hexapod as a base configuration (see Figure 18).
Legs links L1, L2 and L3, (see Figure 19), are auto-
matically defined so that the hexapod satisfies user re-
quirements (i.e. a hexapod which can avoid obstacles
of height h). As a consequence of the variability of leg
size, actuators with different specifications (i.e. torque)
will be selected by the designer. Body links La1 and
La2 will also change in order to adjust the reachable
area for each leg (area free of self-collisions as shown
in blue in Figure 18) to the maximum stride length
for a stable tripod gait [47]. We have developed a mo-
tion controller in ROS that generates tripod, ripple, and
wave locomotion for any hexapod obtained from the
base configuration. Basically, the kinematic model for
each leg (see Figure 19) is modeled in Xacro, con-

Fig. 17. Real manipulator obtained from three different user specifi-
cations.

s L a1

S

L a2

Fig. 18. Hexapod body parametrization according to a stable tripod
gait.

Link di

l1
l2
l3

aiθi

θ1

θ3 – 90º

θ2

1
2
3

άi

0
0

0

00

90º

Fig. 19. Kinematic Model for a 3 dof hexapod leg.

verted to URDF and used with the KDL ROS pack-
age in order to obtain, via inverse kinematics, the joint
trajectories for each locomotion type.

14 F. Ramos et al. / Ontology Based Design, Control and Programming of Modular Robots

Fig. 20. Real hexapod robot build from the parametric kinematic
model of Figure 18.

Link di

LA1
LA2

aiθi

θA0

θA2

θA1+ 90º
1
2
3

άi

0
0 0

00

90º
90º

LL5
LL6

LL1

LL4θL5

4
5
6

0 0
0 0

00
90º

Link di aiθi

θL3– β

θL0– 90º
θL1– 90º

1
2
3

άi

0 0
0

00

–90º
–90º

Left Arm:Right Leg:

θL2+ ά

θL4+ ά

Fig. 21. Kinematic model of the base humanoid robot.

Discussion The motion planner generates statically
stable gaits over flat surfaces. This has been proven
with different size hexapods in simulation (using the
simulator Gazebo) and with the real hexapod of Fig-
ure 20. However, this controller is not reactive, i.e. the
hexapod will not react to obstacles or rough terrain.
This feature will be developed in future works.

4.3.5. Parametric controller for humanoid robots
For a humanoid robot, length of passive modules

(e.g. femur and tibia) can be parameterized . The kine-
matic chain of these robots is the most complex as is
presented in Figure 21, but as well as previous robots,
this kinematic model is translated, using URDF via
Xacro into a KDL model for generating the joint refer-
ences (i.e. inverse kinematics) from the desired move-
ment path.

The process for the controller generation is as fol-
lows:

1. A stable gait already defined for a specific robot
(i.e. Darwin-OP [48]), has been used to obtain a
set of joint trajectories that serve as a basis for

0 20 40 60 80 100 120
time (s)

-1

-0.5

0

0.5

1

1.5

am
pl

itu
de

 (r
ad

)

j1
j2
j3
j4
j5
j6

Fig. 22. Joint trajectories of right leg of humanoid during several
steps of a stable gait.

5 6 7 8 9 10 11 12 13 14 15
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95

5 6 7 8 9 10 11 12 13 14 15
Femur length (cm)

Tibia length (cm)

0.7
0.75
0.8

0.85
0.9

0.95
1

1.05

 S
ca

le
 v

al
ue

 fo
r j

oi
nt

 tr
aj

ec
to

ry
Interpolation
Experimental values

Fig. 23. Conversion maps for humanoid trajectories.

our humanoid. Figure 22 shows these trajectories
for the right leg.

2. Then, FFT has been applied to these trajectories
to obtain main frequency components for each
joint maneuver. These have been used to create a
new set of parameterized joint trajectories, which
we will call the synthetic locomotion.

3. Conversion maps that determine the relation be-
tween size of leg’s passive modules and syn-
thetic locomotion parameters have been empiri-
cally calculated. For instance, it has been stated
that, if joints 2 and 5 are scaled by a factor, body
tilt can be changed to maintain stability, while
the step size can be modified scaling trajectories
of joints 3, 4 and 6. Figure 23 shows these maps,
which happen to be almost linear.

4. Finally, joint trajectories for the concrete robot
are calculated scaling the synthetic locomotion
of Step 2 by factors given by conversion maps of
Step 3. As an example, Figure 24 shows joint 2

F. Ramos et al. / Ontology Based Design, Control and Programming of Modular Robots 15

0 20 40 60 80 100 120
time (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

am
pl

itu
de

 (r
ad

)

5 cm
10 cm

Fig. 24. Trajectories for leg joint 2 of humanoid robot of Figure 21.

Fig. 25. Real Humanoid based on a parametric design.

trajectories for the robots in Figure 21, which are
obtained from:

A j = (−0.0320·x+1.1067)

N∑
i=0

ai sin(ωit+φi)

where N is the number of frequency components
of the synthetic locomotion; ai, ωi and φi are the
FFT values obtained in step 2, and x is the length
of the passive module (tibia) in centimeters.

Discussion As well as for the hexapods, motion con-
trollers for different sized humanoids have been tested
in the Gazebo simulator and with the real robot of Fig-
ure 25 obtaining stable walks over flat surfaces. How-
ever, these motion controllers do not use dynamics to
keep equilibrium (i.e. if the robot is pushed it will fall
down). We are currently working with Inertial Mea-
surement Units (IMUs) to develop this kind of reactive
controllers.

4.4. Interfacing ROS controllers with Bitbloq

Bitbloq is an open source tool for online visual pro-
gramming of electronics and robots developed by BQ.
It has been designed to be used mainly in education.
Bitbloq is similar to Scratch (i.e. they both use blocks)
with the difference that the programs generated in Bit-
bloq run directly in the controllers while in Scratch
programs run in the computer.

We have enhanced Bitbloq adding an interface that
incorporates robots generated with ParMoR. Basically,
we have added the robots included in the base config-
uration database of the automatic generator to Bibloq.
Programming blocks, corresponding to the parametric
controls of the robot planners database, for each robot
have been also created and made available for Bitbloq
users.

If some user wants to use a behavior of a robot (e.g.
walking), he or she only has to drag and drop the corre-
sponding blocks. Bitbloq then generates automatically
code in Python that subscribes to the ROS controller.
It is important to note that robot parameterization does
not affect Bitbloq as this is dealt within the ROS con-
troller (e.g. two different sized humanoids auto gener-
ated with ParMoR will have the same blocks in Bit-
bloq).

The following summarizes an example of program-
ming a snake modular robot with Bitbloq.

– The process starts with the automatic generation
of the snake and its ROS controllers using Par-
MoR’s methodology explained in this work. The
ROS controllers are loaded in the Intel Edison of
the Main Module (defined in Section 5.1).

– Then, the user can select in Bitbloq a snake from
the list of available robots (see Figure 26).

– Programming blocks for the snake are automati-
cally shown to the user as seen in Figure 27. The
user can drag and drop them to write a program.

– Bitbloq program is translated to Python and exe-
cuted as a ROS node.

– This program uses services of the ROS controllers
to move the snake as the user commanded.

5. Parametric Modular Robotics platform
(ParMoR)

We have developed ParMoR to be used with the au-
tomatic designer agent presented in this work. Its prin-

16 F. Ramos et al. / Ontology Based Design, Control and Programming of Modular Robots

Fig. 26. Snake Robot and list of available parametric ParMoR robots
in Bitbloq.

Fig. 27. Example of programming a snake robot with blocks in Bit-
bloq.

cipal characteristic is its parametric modules which al-
lows the agent to parametrize and optimize designs.

In the following we present the main components of
our robotic platform (i.e. active and passive modules)

5.1. Active modules

Active modules (modules with electronic parts)
have been designed to be easily encapsulated using
3D printed faces. They include rails for dovetails pins
which allow users a simple but robust mechanical join-
ing of modules. Figure 28 shows an example of the
design of an active module with the aforementioned
faces.

Active modules, with the exception of the main
module, include an ATtiny85 microcontroller to con-
trol the electronic parts (e.g. actuator, sensor) and to
communicate, via I2C, with the main module. In the
following, we summarize the active modules devel-
oped for ParMoR to date:

– Main module (1 model) based on a Intel Edison
microcomputer with ROS integrated.

Motor

ATtiny85 board
3D Printed
parts

Fig. 28. Assembly of an active module.

– Battery module (1 model) based on a 1500mAh
11.1V Li-Po battery.

– Sensor modules (4 models) for object detection
(contact, ultrasonic, infrared) and robot localiza-
tion (IMU).

– Actuator modules (6 models) for continuous ro-
tation or position control with three different
torque models per type (i.e low, medium and high
torque).

Figure 28 also shows the electronics (i.e. servo and
ATtiny85 board) of the active module used as an ex-
ample.

As active modules communicate via I2C, the maxi-
mum number of modules of a robot is limited by the
address space (210), and also by the total bus capaci-
tance of 400pF. In fact, we have verified that the maxi-
mum number of active modules that can be connected
in our bus without exceeding bus capacitance is 24.
However this number is big enough as the maximum
number of active modules (degrees of freedom) needed
for any robot configuration in our system is 19 (i.e. hu-
manoid robot) .

5.2. Parametric passive modules

The passive modules (i.e. mechanical parts with no
electronics) of our modular architecture have been de-
signed parametrically. This allows the automatic de-
signer to adjust their geometry to meet user require-
ments. Figure 10 showed an example of two passive
link modules with different geometry obtained from
the same base design.

An example of the parametrization of passive mod-
ules is shown in Figure 29 where the links of a robotic
arm have a different design, after the optimization pro-
cess explained in Section 4.2. This guarantees adjust-
ing the reach of the arm to a certain length minimiz-
ing the amount of material. Other examples are the
parametrization of feet which is used to increase stabil-
ity in a walking robot by increasing the contact surface

F. Ramos et al. / Ontology Based Design, Control and Programming of Modular Robots 17

Union

Passive
module

Active Module

Fig. 29. Modular robot architecture.

with the floor, or wheels, on whose radius relies the
maximum speed a wheeled robot can achieve. Mod-
ules can also be easily joined using dovetails pins as is
depicted in Figure 29.

6. Discussion

In this work we have presented our approach for au-
tomatic design, controller generation and easy block
programming for complex robots. The modular archi-
tecture presented in this work is manufactured using
low-cost, fast prototyping techniques (3D printers) us-
ing PLA (PolyLactic Acid) as the printing material.
This makes modular robots presented in this paper
not really suitable for industry applications as the 3D
printed robots have the following issues:

– PLA is not durable enough for repetitive opera-
tions.

– PLA is not stiff which introduces backlash and
non desirable deformations.

– Servo motors are not reliable for 24/7 operation.

Changing 3D printing fast prototyping with other
classic prototyping like CNC metal machining and ser-
vomotors with industrial brushless motors should be
the first step to introduce our approach to the industry
domain. However, our work is not presented as a final
product for industry but as a demonstrator of how au-
tomatic modular robot design and automatic controller
generation can be used to obtain an agile robotic sys-
tem.

In fact, not all the robots presented in this work
have a direct use in industry (i.e. humanoids, snakes
or hexapods) but we do believe that they are a good
testbed of the capabilities of our approach. The straight-
forward example of robot configurations that are used
in industry are the manipulation robots that our sys-
tem can generate. Imagine a small canning company
that one day decides to automatize the process of pal-
letizing their cylindrical cans. As cylindrical cans are

Fig. 30. 3 DOF robot generated by our system for pick&place of
cylindrical cans.

symmetric on their longitudinal axis a robot capable
for pick and place with just positioning is suitable (as
depicted in Figure 30)

The inferred robot corresponds to the following def-
inition in SUO-KIF of manipulator3DOF which is de-
fined as a subclass of industrial robot (subclass of sta-
tionary robot).

(subclass stationaryRobot Robot)
(subclass industrialRobot stationaryRobot)
(subclass manipulator3DOF industrialRobot)
(=>

(instance ?rob manipulator3DOF)
(exists (?serv1 ?serv2 ?serv3 ?grip)

(and
(instance ?serv1 Servomotor)
(instance ?serv2 Servomotor)
(instance ?serv3 Servomotor)
(instance ?grip roboticGripper)

(robotPart ?serv1 ?rob)
(robotPart ?serv2 ?rob)
(robotPart ?serv3 ?rob)
(robotPart ?grip ?rob)
(connectedTo ?serv1 ?serv2)
(connectedTo ?serv2 ?serv3)
(connectedTo ?serv3 ?grip))))

After some time, the company prospers and decides
to produce sardine cans which are oval. As ovals are
not symmetric the robot needs now the capability of
orienting the gripper. Our approach will generate a new
robot as is seen in Figure 31.

The inferred robot in this case corresponds to
the following definition in SUO-KIF of manipula-
tor6DOF which is defined as a subclass of industrial
robot (subclass of stationary robot).

(subclass stationaryRobot Robot)
(subclass industrialRobot stationaryRobot)
(subclass manipulator6DOF industrialRobot)
(=>

(instance ?rob manipulator6DOF)

18 F. Ramos et al. / Ontology Based Design, Control and Programming of Modular Robots

Fig. 31. 6 DOF robot generated by our system for pick&place of
oval cans.

(exists (?serv1 ?serv2 ?serv3
?serv4 ?serv5 ?serv6 ?grip)

(and
(instance ?serv1 Servomotor)
(instance ?serv2 Servomotor)
(instance ?serv3 Servomotor)
(instance ?serv4 Servomotor)
(instance ?serv5 Servomotor)
(instance ?serv6 Servomotor)
(instance ?grip roboticGripper)

(robotPart ?serv1 ?rob)
(robotPart ?serv2 ?rob)
(robotPart ?serv3 ?rob)
(robotPart ?serv4 ?rob)
(robotPart ?serv5 ?rob)
(robotPart ?serv6 ?rob)
(robotPart ?grip ?rob)
(connectedTo ?serv1 ?serv2)
(connectedTo ?serv2 ?serv3)
(connectedTo ?serv3 ?serv4)
(connectedTo ?serv4 ?serv5)
(connectedTo ?serv5 ?serv6)
(connectedTo ?serv6 ?grip))))

The company just have to upgrade its robot with the
new modules that our system generates, while the new
controller and the blocks for an easy programming are
as well provided.

Currently, our application lets users configure a
manipulator modifying four different parameters: (a)
shape of the objects to work with, (b) payload, (c)
rough radius of the workspace and (d) degrees of free-
dom (DOF). With that information we are able to infer
the gripper we need (depending on the shape of the ob-
ject) and the configuration of the final robot. The mod-
ular robotic architecture developed by Schunk [11]
is able to create a large number of different config-
urations for industrial manipulators. The differences
among the robot instances depend on, in a first clas-
sification, two values that are part of the parameters
used in our robot design generation: DOF and pay-
load. Therefore, it can be deducted that applying our
methodology to an industrial modular platform is pos-
sible and, in fact, it is one of the main targets for

new developments. Obviously, this extension would
require new concepts in the ontology regarding perfor-
mance measurements, such as repeatability or dexter-
ity, new industry-oriented tasks and new physical con-
cepts such as a variety of end-effectors for different
purposes.

Although the previous example is very clarifying,
there are other situations where companies, using dif-
ferent robots, could benefit from our approach. For ex-
ample, there are companies that use snake robots for
pipe inspection, search or rescue. Depending on the ap-
plication, snake robots should have at least a specific
configuration and minimum number of DOF which
our system would determine.

6.1. Limitations

Our approach is far from being ready for an indus-
trial application and even if we just used it for educa-
tion or research, we would find some limitations. It is
the aim of this section to identify some of those limi-
tations and propose how we could manage them in the
future.

In the previous sections we have shown how our
approach is able to decide the design of a robot au-
tomatically from the desires of a user. We have care-
fully selected the capabilities that a user can choose
for a robot to have, so that they can be performed with
the resources which are at our disposal (modular ar-
chitecture and ontology). When writing our knowledge
base, we made sure that every possible capability was
connected to at least one structural part (e.g. walk-
ing and robot leg) and that we could build a feasible
robot which was able to perform the expected action.
All of this is possible because in our knowledge base
we have included instances of robots (including their
parts) which can be built with our resources. Note that,
though implicitly, all the capabilities of those robots
are also defined. Thus, our system will never find a
situation in which the proposed design does not fulfill
the user desires and nor a design which is not feasible,
since our system is totally deterministic. In future ver-
sions we will explore how to introduce some random-
ness through heuristics.

Due to the lack of randomness in our process, we
have not implemented a way of measuring how good
our approach is yet, however, we have started search-
ing for some potential metrics. Modularity, Regular-
ity and Hierarchy (MR&H) [49] have been identified
by researchers as useful principles for designing com-
plex systems. Note that these characteristics can also

F. Ramos et al. / Ontology Based Design, Control and Programming of Modular Robots 19

be seen in nature. Even though in [49] those concepts
are considered from an evolutionary point of view, they
are general and can be applied to any design process.
The evaluation of those characteristics can be seen as a
metrics of how good a design is. Considering the gen-
eral definition we can understand better how they fit
within our work.

– Modularity: The modularity value of a design is
a count of the number of structural modules in it.

– Regularity: Amount of reuse of the modules
used in the design process.

– Hierarchy: Number of nested layers of modules.

These metrics, while not yet assessed in our plat-
form, are clearly aligned with our work, as we are
using a modular architecture with reusable modules
and several hierarchy levels (RobotC → robotPartC →
StructuralRobotPart→ Module).

7. Conclusions

This work presents our comprehensive approach for
agile design, control and programming of a novel mod-
ular robotic platform designed to be used in different
domains (i.e. educational and research) and as a proof
of concept for the industry domain.

An extension to the ORA Standard, ADROn, has
been developed, providing new concepts that relate
robot capabilities and structural robot parts or robot
types. A knowledge system, consisting of ADROn and
an existent reasoner, processes the user requirements
(desired robot capabilities) to select the most adequate
robot configuration. ParMoR, a collection of 3D print-
able, modular components, serves as a testbed to the
structure and controller designers for the robots se-
lected by the knowledge system. This is a co-design
problem that has been solved with parameterized de-
signs, both for structure and controllers, for the robots
available in ADROn. The controllers have been encap-
sulated with the visual programming language Bitbloq,
abstracting the low-level control execution, performed
in ROS, from inexperienced users.

This end-to-end process conceals the complexity
of designing robots and their controllers from novice
users, such as non-engineering personnel or even high-
school students, allowing them to develop and program
a large number of complex robots of a certain number
of base configurations.

As discussed, there still exists a considerable gap for
its application in industrial environments, but the de-

sign process described in this article is generic and the
tools provided are scalable. Therefore, it could be ex-
tended to other domains of robotics with the appropri-
ate extensions of the ontology and the adequate modu-
lar platforms.

References

[1] Bauml B, Hirzinger G. Agile Robot Development (aRD): A
Pragmatic Approach to Robotic Software. In: 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems;
2006. p. 3741–3748.

[2] Chen IM. Rapid response manufacturing through a rapidly
reconfigurable robotic workcell. Robotics and Computer-
Integrated Manufacturing. 2001;17(3):199 – 213. Avail-
able from: http://www.sciencedirect.com/science/article/pii/
S0736584500000284.

[3] Kruse D, Radke RJ, Wen JT. Collaborative human-robot ma-
nipulation of highly deformable materials. In: 2015 IEEE In-
ternational Conference on Robotics and Automation (ICRA);
2015. p. 3782–3787.

[4] Cherubini A, Passama R, Crosnier A, Lasnier A, Fraisse P.
Collaborative manufacturing with physical human–robot in-
teraction. Robotics and Computer-Integrated Manufacturing.
2016;40:1 – 13. Available from: http://www.sciencedirect.
com/science/article/pii/S0736584515301769.

[5] Rethink Robotics;. Accessed: 2017-4-15. http://www.
rethinkrobotics.com/.

[6] KUKA LBR iiwa;. Accessed: 2017-4-15. https://www.kuka.
com/en-de/products/robot-systems/industrial-robots/lbr-iiwa.

[7] ABB YuMi;. Accessed: 2017-4-15. http://new.abb.com/
products/robotics/es/robots-industriales/yumi.

[8] Universal Robots UR Series;. Accessed: 2017-4-15. https:
//www.universal-robots.com/.

[9] Chung WK, Han J, Youm Y, Kim S. Task based design of
modular robot manipulator using efficient genetic algorithm.
In: Robotics and Automation, 1997. Proceedings., 1997 IEEE
International Conference on. vol. 1. IEEE; 1997. p. 507–512.

[10] Valente A. Reconfigurable industrial robots: A stochastic
programming approach for designing and assembling robotic
arms. Robotics and Computer-Integrated Manufacturing.
2016;41:115 – 126. Available from: http://www.sciencedirect.
com/science/article/pii/S0736584516300928.

[11] Schunk Modular Robotic System;. Ac-
cessed: 2016-09-1. https://de.schunk.com/de_
en/gripping-systems/category/gripping-systems/
handling/modular-and-mobile-gripping-systems/
schunk-lightweight-arms/.

[12] Kelmar L, Khosla PK. Automatic generation of kinematics
for a reconfigurable modular manipulator system. In: Robotics
and Automation, 1988. Proceedings., 1988 IEEE International
Conference on. IEEE; 1988. p. 663–668.

[13] Paredis CJ, Khosla PK. Kinematic design of serial link manip-
ulators from task specifications. The International Journal of
Robotics Research. 1993;12(3):274–287.

[14] Jonquet C, Musen MA, Shah NH. Building a biomedical on-
tology recommender web service. Journal of biomedical se-
mantics. 2010;1(1):S1.

http://www.sciencedirect.com/science/article/pii/S0736584500000284
http://www.sciencedirect.com/science/article/pii/S0736584500000284
http://www.sciencedirect.com/science/article/pii/S0736584515301769
http://www.sciencedirect.com/science/article/pii/S0736584515301769
http://www.rethinkrobotics.com/
http://www.rethinkrobotics.com/
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
http://new.abb.com/products/robotics/es/robots-industriales/yumi
http://new.abb.com/products/robotics/es/robots-industriales/yumi
https://www.universal-robots.com/
https://www.universal-robots.com/
http://www.sciencedirect.com/science/article/pii/S0736584516300928
http://www.sciencedirect.com/science/article/pii/S0736584516300928
https://de.schunk.com/de_en/gripping-systems/category/gripping-systems/handling/modular-and-mobile-gripping-systems/schunk-lightweight-arms/
https://de.schunk.com/de_en/gripping-systems/category/gripping-systems/handling/modular-and-mobile-gripping-systems/schunk-lightweight-arms/
https://de.schunk.com/de_en/gripping-systems/category/gripping-systems/handling/modular-and-mobile-gripping-systems/schunk-lightweight-arms/
https://de.schunk.com/de_en/gripping-systems/category/gripping-systems/handling/modular-and-mobile-gripping-systems/schunk-lightweight-arms/

20 F. Ramos et al. / Ontology Based Design, Control and Programming of Modular Robots

[15] Tenorth M, Beetz M. KnowRob – A Knowledge Processing In-
frastructure for Cognition-enabled Robots. International Jour-
nal of Robotics Research. 2013 April;32(5):566 – 590. Avail-
able from: http://ijr.sagepub.com/content/32/5/566.short.

[16] IEEE Standard Ontologies for Robotics and Automation (IEEE
Std 1872-2015); 2015. Available from: http://ieeexplore.ieee.
org/document/7084073/.

[17] Guarino N, Oberle D, Staab S. In: Staab S, Studer R, editors.
What Is an Ontology? Berlin, Heidelberg: Springer Berlin Hei-
delberg; 2009. p. 1—17.

[18] Censi A. Monotone Co-Design Problems; or, everything is the
same. In: American Control Conference (ACC), 2016. IEEE;
2016. p. 1227–1234.

[19] Berners-Lee T, Hendler J, Lassila O, et al. The semantic web.
Scientific american. 2001;284(5):28–37.

[20] Niles I, Pease A. Towards a standard upper ontology. In: Pro-
ceedings of the international conference on Formal Ontology
in Information Systems. ACM; 2001. p. 2–9.

[21] Cellucci D, MacCurdy R, Lipson H, Risi S. 1D Printing of
Recyclable Robots. IEEE Robotics and Automation Letters.
2017 Oct;2(4):1964–1971. Available from: http://dx.doi.org/
10.1109/LRA.2017.2716418.

[22] Takacs A, Eigner G, Kovacs L, Rudas IJ, Haidegger T.
Teacher’s Kit: Development, Usability, and Communities of
Modular Robotic Kits for Classroom Education. IEEE
Robotics Automation Magazine. 2016 June;23(2):30–39.

[23] Sprowitz A, Moeckel R, Vespignani M, Bonardi S, Ijspeert AJ.
Roombots: A hardware perspective on 3D self-reconfiguration
and locomotion with a homogeneous modular robot. Robotics
and Autonomous Systems. 2014;62:1016–1033.

[24] Ahmadzadeh H, Masehian E, Asadpour M. Modular Robotic
Systems: Characteristics and Applications. Journal of Intelli-
gent & Robotic Systems. 2016;81(3):317–357. Available from:
http://dx.doi.org/10.1007/s10846-015-0237-8.

[25] Schweikardt E, Gross MD. Learning About Complexity with
Modular Robots. In: Proceedings of the 2008 Second IEEE
International Conference on Digital Game and Intelligent Toy
Enhanced Learning. DIGITEL ’08. Washington, DC, USA:
IEEE Computer Society; 2008. p. 116–123. Available from:
http://dx.doi.org/10.1109/DIGITEL.2008.49.

[26] Pacheco M, Fogh R, Lund H, Christensen D. Fable: A Modu-
lar Robot for Students, Makers and Researchers. In: Proceed-
ings of IROS 2014 Workshop on Modular and Swarm Systems;
2014. .

[27] Digumarti KM, Gehring C, Coros S, Hwangbo J, Siegwart R.
Concurrent Optimization of Mechanical Design and Locomo-
tion Control of a Legged Robot. In: Climbing and Walking
Robots (CLAWAR); 2014. .

[28] Spielberg A, Araki B, Sung CR, Tedrake R, Rus D. Func-
tional co-optimization of articulated robots. In: 2017 IEEE
International Conference on Robotics and Automation, ICRA
2017, Singapore, Singapore, May 29 - June 3, 2017; 2017.
p. 5035–5042. Available from: https://doi.org/10.1109/ICRA.
2017.7989587.

[29] Jing G, Tosun T, Yim M, Kress-Gazit H. An End-To-End Sys-
tem for Accomplishing Tasks with Modular Robots. In: Pro-
ceedings of Robotics: Science and Systems. AnnArbor, Michi-
gan; 2016. .

[30] Huckaby JO. Knowledge transfer in robot manipulation tasks
[PhD]. Georgia Institute of Technology. Georgia; 2014.

[31] Lipson H, Pollack JB. Automatic design and manufacture of
robotic lifeforms. Nature. 2000;406(6799):974–978.

[32] Zhu Z, Xiao J, Li J, Wang F, Zhang Q. Global path planning of
wheeled robots using multi-objective memetic algorithms. In-
tegrated Computer-Aided Engineering. 2015;22(4):387–404.
Available from: https://doi.org/10.3233/ICA-150498.

[33] BitBloq;. Accessed: 2017-2-28. http://bitbloq.bq.com/#/.
[34] Pease A. Standard Upper Ontology Knowledge Inter-

change Format; 2009. Web document, http://sigmakee.cvs.
sourceforge.net/viewvc/sigmakee/sigma/suo-kif.pdf.

[35] Jorge VA, Rey VF, Maffei R, Fiorini SR, Carbonera JL,
Branchi F, et al. Exploring the IEEE ontology for robotics and
automation for heterogeneous agent interaction. Robotics and
Computer-Integrated Manufacturing. 2015;33:12–20.

[36] Fiorini SR, Carbonera JL, Gonçalves P, Jorge VAM, Rey VF,
Haidegger T, et al. Extensions to the core ontology for robotics
and automation. Robotics and Computer-Integrated Manu-
facturing. 2015;33:3–11. Special Issue on Knowledge Driven
Robotics and Manufacturing.

[37] Bayat B, Bermejo-Alonso J, Carbonera JL, Facchinetti T, Fior-
ini S, Goncalves P, et al. Requirements for building an ontol-
ogy for autonomous robots. Industrial Robot: An International
Journal. 2016;43(5):469–480.

[38] Fiorini SR, Bermejo-Alonso J, Gonçalves PJS, de Freitas EP,
Olivares-Alarcos A, Olszewska JI, et al. A Suite of On-
tologies for Robotics and Automation [Industrial Activities].
IEEE Robot Automat Mag. 2017;24(1):8–11. Available from:
https://doi.org/10.1109/MRA.2016.2645444.

[39] Pease A. The sigma ontology development environment. In:
Working Notes of the IJCAI-2003 Workshop on Ontology and
Distributed Systems. vol. 71; 2003. .

[40] Siciliano B, Khatib O. Springer handbook of robotics.
Springer; 2016.

[41] Pedregal P. Introduction to Optimization. Springer-Verlag New
York; 2004.

[42] González-Gómez J, Zhang H, Boemo E. Locomotion princi-
ples of 1D topology pitch and pitch-yaw-connecting modular
robots. In: Bioinspiration and Robotics Walking and Climbing
Robots. InTech; 2007. .

[43] González Gómez J, Zhang H, Boemo EI, Zhang J. Loco-
motion capabilities of a modular robot with eight pitch-yaw-
connecting modules. In: 9th International Conference on
Climbing and Walking Robots, CLAWAR; 2006. .

[44] Gómez JG. Modular Robotics and Locomotion: Application
to Limbless Robot [phdthesis]. Universidad Autonoma de
Madrid; 2008.

[45] Robot Operating System;. Accessed: 2016-09-1. http://www.
ros.org/.

[46] Koenig N, Howard A. Design and use paradigms for gazebo,
an open-source multi-robot simulator. In: Intelligent Robots
and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ
International Conference on. vol. 3. IEEE; 2004. p. 2149–2154.

[47] Lee TT, Liao CM, Chen TK. On the stability properties of
hexapod tripod gait. IEEE Journal on Robotics and Automa-
tion. 1988;4(4):427–434.

[48] Ha I, Tamura Y, Asama H. Development of open plat-
form humanoid robot DARwIn-OP. Advanced Robotics.
2013;27(3):223–232. Available from: http://dx.doi.org/10.
1080/01691864.2012.754079.

[49] Hornby G. Toward the Computer-Automated Design of So-
phisticated Systems by Enabling Structural Organization. In:
Symposium on Complex System Engineering’07. Citeseer;
2007. .

http://ijr.sagepub.com/content/32/5/566.short
http://ieeexplore.ieee.org/document/7084073/
http://ieeexplore.ieee.org/document/7084073/
http://dx.doi.org/10.1109/LRA.2017.2716418
http://dx.doi.org/10.1109/LRA.2017.2716418
http://dx.doi.org/10.1007/s10846-015-0237-8
http://dx.doi.org/10.1109/DIGITEL.2008.49
https://doi.org/10.1109/ICRA.2017.7989587
https://doi.org/10.1109/ICRA.2017.7989587
https://doi.org/10.3233/ICA-150498
http://bitbloq.bq.com/#/
http://sigmakee.cvs.sourceforge.net/viewvc/sigmakee/sigma/suo-kif.pdf
http://sigmakee.cvs.sourceforge.net/viewvc/sigmakee/sigma/suo-kif.pdf
https://doi.org/10.1109/MRA.2016.2645444
http://www.ros.org/
http://www.ros.org/
http://dx.doi.org/10.1080/01691864.2012.754079
http://dx.doi.org/10.1080/01691864.2012.754079

	Introduction
	Why are these the right tools?
	Why ontologies?
	Why modular robotics?

	Automatic Design of Robots Ontology
	Robot actions
	Structural robot parts & Structural requirements
	Robot types

	Automatic robot design system
	Ontology-based robot selection
	Robot structure generation
	Dynamic analysis
	Passive modules optimization
	Stress analysis
	ROS robot description
	3D printable files

	Co-design of motion controllers and robot structures from parametric kinematic models
	Parametric controller for wheeled robots
	Parametric controller for snake robots
	Parametric controller for robot manipulators
	Parametric controller for hexapod robots
	Parametric controller for humanoid robots

	Interfacing ROS controllers with Bitbloq

	Parametric Modular Robotics platform (ParMoR)
	Active modules
	Parametric passive modules

	Discussion
	Limitations

	Conclusions
	References

