
Skill-oriented designer of conceptual robotic structures*

Francisco Ramos1, Member IEEE, Cristian O. Scrob2, Andrés S. Vázquez1,
Raúl Fernández1 and Alberto Olivares-Alarcos3.

Abstract— This communication presents an application for
the use of ontologies in the generation of robot structures.
The ontology developed for this app relies on the IEEE
Standard Ontologies for Robotics and Automation (ORA) and
it incorporates a set of concepts, relations and axioms that
link robotic skills with the structural parts needed for their
realization. The user can select a base configuration and/or a
set of desired skills that the robot should be able to perform.
Then, the application evaluates the axioms and returns an
abstract structure that can carry out the requested skills. The
final implementation of the structure can be achieved with any
modular robotic platform that could identify each structural
part with a physical device.

I. INTRODUCTION

Traditionally, robot design has been based on performing
a certain task most efficiently and accurately. This design
usually consisted of some hardware specifically designed for
the task at hand by a group of engineers, and a software
heavily oriented to support that specific hardware and to
provide only the original design functionalities. In fact, these
designs were (more often than not) isolated from, or at least
incompatible with, other similar devices.

During the last years, several approaches have tried to
address the automation of this design process. Actually, this
is a topical issue in robotics which has been addressed in
a Workshop at recent ICRA 2018. In [1], robot arm design
requirements are encoded as desired motion trajectories for
the end-effector. The proposed system enables on-demand
design of custom robot arms using a library of modular and
reconfigurable parts such as actuators and connecting links.
The method generates a functional, as-simple-as-possible
robot arm that is capable of tracking the desired trajectories.
In [2], formalization, minimality and integration are pro-
posed as other questions that must be addressed in automatic
robot design. Nonetheless, the most renowned approaches
are based on evolutionary techniques [3], [4]. Evolutionary
robot design aims to create robots according to a certain
set of initial specifications (inputs), which might be skills,
but, instead of a group of engineers, it uses evolutionary

*This work was supported by CDTI under expedient IDI-20150289
(BOTBLOQ: Ecosistema integral para el diseño, fabricación y programación
de robots DIY).

1F. Ramos, R. Fernández and A.S. Vázquez are with the School of
Engineering of the University of Castilla-La Mancha, Ciudad Real, Spain
{francisco.ramos, raul.fernandez, andress.vazquez}
@uclm.es.

2C.O. Scrob is with Indra Systems S.A., Madrid, Spain
no.cristian.fr@gmail.com.

3A. Olivares-Alarcos is with the Institute of Robotics and Industrial
Informatics of the Polytechnic University of Catalonia, Barcelona, Spain
aolivares@iri.upc.edu.

algorithms to automate the process. This allows to obtain
different solutions for the same inputs, some of which
could be devised by humans, while others could be highly
innovative or even game changers for robot design. However,
in [5], authors state that, while evolutionary robotics has
aimed to optimize robot control and morphology to produce
better and more robust robots, most previous research only
addresses optimization of control, and does this only in
simulation. In order to solve this problem, they developed
a four-legged mammal-inspired robot that features a self-
reconfiguring morphology. Thus, they discuss the advantages
and drawbacks of being able to efficiently do experiments on
a changing morphology in the real world.

On the other hand, there is a growing interest in the
robotics community on the topic of knowledge represen-
tation using ontologies. The publication of the IEEE-ORA
Standard [6] in 2015 has been a starting point for many
applications. For example, in [7] the authors experimentally
demonstrated the applicability of ORA. Ontologies can also
help with the relational representation of the environment,
allowing for example the semantic navigation of robots [8],
or with the cognitive representation in social robotics [9].
The standard is being extended by the Autonomous Robotics
(AuR) Ontology Working Group of the IEEE [10].

In [11], design is defined as the process of satisfying rather
than optimizing. However, in our approach, both processes
are present during design: evolutionary robotics might be the
optimization tool of the designer, while ontologies could help
to satisfy the semantic requirements of the user, provided in
natural language. Ontologies add the semantic information
needed for giving a mechanical structure a meaning, relating
their structural parts to the set of skills enabled by having
them. This process provides abstract able configurations and,
with them, evolutionary algorithms could explore the space
of solutions given by the set of physical devices that could
replace each structural part using, for example, a modular
robotic platform. Specifically, the directed graph of a robot
structure, which can be represented using an ontology, could
be seen as the representation of solutions/individuals in
evolutionary computation methods.

In [12] the authors presented a robot configuration selector
based on desired tasks to be performed by a robot. The
selection was performed by matching the desired tasks with
the abilities of each base configuration by means of an
ontology taxonomy. This work was extended in [13] as a
part of an end-to-end educational robots designer operable
by non-expert users that uses a modular robotic platform
called ParMoR for constructing the physical models.



In this communication we present a new design procedure
that creates abstract robot structures without the need for
a base configuration. Our starting point is the Automatic
Design of Robots Ontology (ADROn) presented in [12]
which is written in SUO-KIF language to be compatible
with ORA[6]. ADROn includes classes for different robot
morphologies, robotic skills and devices. To improve its
functionalities, we have defined a set of relations and laws
that impose restrictions on the robot morphology (e.g. a
bipedal robot has two legs) and the robotic skills, (e.g. a robot
needs feet for walking). In this manner, we add semantic
information to the structural parts used in the robot structure
creation from natural language requirements.

An application for editing, parsing and visualizing on-
tologies and instances of ontologies written in SUO-KIF
language has been developed. The application allows several
modes of design: configuration-based, skill-based and free.
The output of this application will be the SUO-KIF instance
with the definition of the robot structure.

II. ADRON

ADROn is an ontology which relies on ORA [6]. The aim
of ADROn was to define more specific concepts which were
not covered within the standard. Specifically, concepts that
allowed the automatic inference of abstract design/selection
of a robot given its expected capabilities.

Its potential has already been tested in previous
works [12], [13], where ADROn was used to decide, among
several predefined base configurations (e.g. humanoid, ma-
nipulator, etc.), which one was most adequate to per-
form a certain set of actions (e.g. walking or grasping),
specified as user requirements. The taxonomy included
three essential terms of our framework: RobotActionA

1,
StructuralRobotPartA2 and RobotTypeA. The system used
ADROn to infer the physical parts (StructuralRobotPartsA)
needed to carry out those actions and then matched them
with the defined base configurations. The base configuration
that contained all the StructuralRobotPartsA needed to fulfill
the user requirements was selected as the solution.

In this work we move one step further by removing the
base configurations, so that our framework is able to build
a robot step-by-step by assembling several structural parts,
where each of them fulfills some of the user requirements.
Note that these requirements are just a set of capabilities
(actions the robot is able to perform), not the function/pur-
pose of the robot itself. For example, the function of a robot
might be playing football, while the set of capabilities (our
system requirements) needed to achieve that function would
be translocate, avoid obstacles, sense a ball and propel a ball.

Obviously, this adds more flexibility to our framework
while complicating the problem. Thus, an extension of
ADROn becomes necessary, since the new proposal requires

1Subscripts indicate concepts previously included in ontologies: A for
previous version of ADROn, O for ORA Standard and S for SUMO. Terms
without subscripts are new to ADROn in this paper.

2Physical artifact which is part of a robot and plays a necessary role when
a robot performs an action (e.g. a RobotLeg is essential for a robot to walk).

more inference power. In the next sections, we present new
concepts, relations and axioms which have been added to our
previous version of ADROn.

A. Relations

StructuralRobotPartsA and/or DevicesS might be related
in different ways: if there is some relative movement between
them we say they are articulated (e.g. a leg with a trunk),
but for static elements they only need to be connected (e.g.
the power supply with an actuator). These are some relations
that we have found of interest to work with in the ontology:

• robotPartO states that a StructuralRobotPartA belongs
to a certain RobotO instance. It is an ORA concept but
very useful in the verification process.

• robotAbleTo relates a RobotO with a RobotSkill.
• robotCanSense indicates that a RobotO can measure a

certain PhysicalS property. It is a subclass of relation
canSense, which indicates that a DeviceS can measure
a certain PhysicalS property, and also a subclass of
robotAbleTo. With these relations we provide that the
robot inherits the sensing ability provided by a sensor.

• formedBy states that a DeviceS is composed of others
(e.g. an inertial measurement unit is composed of ac-
celerometers and gyroscopes).

• connectedTo indicates that two different
StructuralRobotPartsA are physically connected.

• articulatedTo adds a constraint to connectedTo,
specifying that there is a joint between the
StructuralRobotPartsA related.

B. Terms

The taxonomy of the terms provided by the ontology is
too extensive to be displayed in this communication. Some
of the main subclasses are the following:

• StructuralRobotPartsA represent any part that has a
semantic meaning in a robot. It is basically divided in
RobotHead, RobotTrunk and RobotLimb. This last, in
turn, is divided in RobotLeg and RobotArm. Many other
robot parts are still to be added (e.g. hands or wings).

• However, other physical elements, such as RobotJoint
or EndEffector, are directly defined as subclasses of
DeviceS as they do not add a semantic meaning.

• Sensor is a subclass of DeviceS which, in turn, has many
subclasses that are associated to RobotSkills, such as,
LocationSensor, DistanceSensor or VisualSensor.

• Other common devices in robotics are grouped un-
der Actuator, ElectricDevice and CommunicationDevice
subclasses of DeviceS .

• RobotSkills are defined as a subclass of SkillS , where
the subject is a RobotO. The taxonomy for RobotSkills
is displayed in Figure 1.

C. Axioms

Many axioms have been included in order to verify the cor-
rectness of the instances definition. They provide for different
ways of defining different structures. For example, we could
directly instantiate the HumanoidRobotA type or the system



Fig. 1. Taxonomy of the RobotSkills included in ADROn.

could automatically extract each one of the components from
the definition of HumanoidRobotA. Some sample axioms will
be presented, illustrating different situations that our system
can cope with.

The following axiom expresses the equivalence of having a
RobotJoint in between two StructuralRobotPartsA and using
the relation articulatedTo.

(subclass RobotJoint Device)
(forall (?rJ)
(=>
(instance ?rJ RobotJoint)
(exists (?dev1 ?dev2)
(and
(instance ?dev1 Device)
(instance ?dev2 Device)
(articulatedTo ?dev1 ?dev2)
(connectedTo ?dev1 ?rJ)
(connectedTo ?dev2 ?rJ)

) ) ) )

There are also axioms to consider the structural require-
ments for a robot to be of a certain type, for example an
HumanoidRobotA.

(subclass HumanoidRobot BipedalRobot)
(forall (?rob)
(=>
(instance ?rob HumanoidRobot)
(and
(exists (?arm1 ?arm2 ?trnk ?head)
(and
(instance ?arm1 RobotArm)
(instance ?arm2 RobotArm)
(instance ?trunk RobotTrunk)
(instance ?head RobotHead)
(articulatedTo ?head ?trunk)
(articulatedTo ?arm1 ?trunk)
(articulatedTo ?arm2 ?trunk)
(robotPart ?trunk ?rob)

) ) ) ) )

Some more elaborated axioms have also been developed.
E.g. the line tracking skill axiom states that if there is a
physical stimulus that allows to perceive a line, in order to
be able to do the following, the robot must have a sensor
that can sense that stimulus.

(forall (?rob ?line ?stim ?lflw)
(=>
(and
(instance ?lflw RobotLineTrack)

(instance ?rob Robot)
(instance ?line Physical)
(?lflw ?rob ?line)
(instance ?stim Physical)

)
(and
(formedBy ?line ?stim)
(exists (?prt)
(and
(instance ?prt Device)
(canSense ?prt ?stim)
(robotPart ?prt ?rob)

) ) ) ) )

III. DESIGN PROCESS

Once we have defined a set of relations, terms and axioms
for our ontology, we can establish a design procedure based
upon the user requirements. Three different design modes
have been considered: configuration-based, skill-based and
free mode. This section briefly explains the different design
modes and a generic algorithm used for the creation of the
robot structure.

A. Configuration-based Mode

In this mode, a robotic configuration is chosen by the
user and the system extracts all the characteristics of that
configuration and instantiates the needed structural robot
parts as defined in the ontology axioms. Any of the robots
included in the taxonomy can be fully instantiated with
Algorithm 1, where sA is the whole set of axioms contained
in the ontology. Algorithms 2, 3 and 4 are provided for better
understanding of some parts of the complete algorithm.

On top of the robot type, some skills, sRS, might also
be added as requirements to include other robot parts to our
instance (see following subsection for an example).

Algorithm 1 Robot structure design main algorithm
Require: sRS ← set of RobotSkill and RM ← RobotMorphology and sA
← set of axioms
Create R as an Instance of RM
Ask for R to exhibit sRS
verify(R, sA)
return instance of solution

Algorithm 2 verify(A,L): Force structure A to verify axioms
set L
Require: A ← Structure and L ← set of Axioms

ES ← ∅
for each axiom in L do

if contains(A,axiom.antecedent) and not ∃ structure ∈ ES so that
contains(structure, axiom.consequent) then

if ∃ structure ∈ ES and contains(axiom.consequent, structure) then
Substitute structure with axiom.consequent

else
Add axiom.consequent to ES

end if
end if

end for each
for each structure in ES do

add(A,structure)
end for each



Algorithm 3 contains(A,B): Verify that logical structure (A)
contains (B)
Require: A,B ← Structure

sPA ← set of parts ∈ A
sPB ← set of parts ∈ B
for each pb ∈ sPB do

if ∃ pa ∈ sPA and (pa ≡ pb or pa is a descendant of pb) then
Discard pa

else
return A lacks pb, so it does not contain B

end if
end for each
sRA ← set of relation ∈ A
sRB ← set of relation ∈ B
for each rb ∈ sRB do

if ∃ ra ∈ sRA and ra ≡ rb then
Discard ra

else
return A lacks rb, so it does not contain B

end if
end for each
return A contains B

Algorithm 4 add(A,B): Add logical structure (B) to (A)
Require: A,B ← Structure

sPA ← set of Part ∈ A
sPB ← set of Part ∈ B
if not (contains(A,B)) then

for each pb ∈ sPB do

if ∃ pa ∈ sPA and (pa ≡ pb or pa is descendant of pb) then
Discard pa

else

if ∃ pa ∈ sPA and pa is parent of pb then
Substitute pa with pb

else
Add pb to spA

end if
end if

end for each
sRA ← set of relation ∈ A
sRB ← set of relation ∈ B
for each rB ∈ sRB do

if ∃ ra ∈ sRA and ra ≡ rb then
Discard ra

else
Create rb ∈ A

end if
end for each

end if
return A

The characteristics of each RobotTypeA are inherited by
their descendants. If we considered the taxonomy branch
regarding legged robots (see Figure 2):

• A RobotO has a RobotTrunk (as RobotO is a concept in-
cluded in ORA, its definition has not been changed and
RobotTrunk is included in each of the robot subclasses
instead).

• A GroundRobot is a RobotO with an undetermined
locomotion mechanism to move on the ground.

• A LeggedRobot is a GroundRobot which uses legs as
the locomotion mechanism. It has, at least, one leg.

• A BipedRobot is a LeggedRobot that has exactly two
legs articulated to the RobotTrunk.

• A HumanoidRobot is a BipedRobot that has two arms
and one head (resembling a human form), also articu-
lated to the RobotTrunk.

Fig. 2. Taxonomy path from HumanoidRobot to root class RobotO .

Then, the robot type creation algorithm moves from the
root class, RobotO, to the specific robot type requested
adding each of the structural parts included in each subclass.

B. Skill-based Mode

In this mode, the user provides a set of skills as require-
ments and the robot instance is constructed upon them. The
robot structure is created as an instance of RobotO with a
RobotTrunk. Subsequently, the rest of StructuralRobotPartsA
or robotPartsO are added (Algorithm 4) depending on the ful-
fillment of the axioms relating certain DevicesS /robotPartsO
with desired RobotSkills (Algorithm 2).

C. Free Mode

In this mode, the user can freely concatenate available
StructuralRobotPartsA, robotPartsO and DevicesS in any
way he considers. The algorithm will check for the fulfill-
ment of the ontology axioms whenever a new element is
added (Algorithm 2), as most of these axioms written for
the ontology can be used either to infer the missing robot
parts to perform a certain skill or to guarantee the consistency
of the abstract description of the robot structure.

These three modes could be used jointly if needed (see
Section IV-D for an example).

IV. APPLICATION AND CASE STUDY

In order to test the validity of the approach, a graphical
application written in JAVA has been developed. It has three
functionalities: editor, SUO-KIF parser and robot designer.

A. Parser

Writing an ontology is a tedious task. Other languages
such as OWL have useful tools for creating and editing
ontologies with friendly interfaces that leverage the task.
To help debug our ontology files, a SUO-KIF parser that
simplifies the debugging process of the ontology has been
written. It indicates the closure of the different elements



Fig. 3. Screen capture of designer application.

of the language such as instances, subclasses or logical
particles. The parser is also responsible for extracting the
ontology knowledge into classes and objects that be manip-
ulable within the JAVA code.

B. Editor

As a companion for the parser, a simple text editor with
SUO-KIF syntax highlighting has been programmed, to be
be used jointly with the parser: the one finds the syntax
errors, the other allows file edition simultaneously. In this
manner the debugging process is simpler and faster. This
is a nice feature as, to our knowledge, no other available
editor includes SUO-KIF as a supported language for syntax
highlight. Although a style sheet could have been created
for some widespread text editors, we wanted to join all
functionalities in a single application for the aforementioned
practical reasons.

C. Designer

The robot designer allows for the three design modes
presented in previous Section. To achieve this, it provides
several menus for selecting a robot type (configuration-
based), including skills into an existing structure (skill-based)
or simply adding any element described in the ontology and
attach it to any other robot part (free mode). Figure 3 displays
a capture of the designer.

D. Case Study: Humanoid with Skills

In this section we present a case study on the creation of
a humanoid structure with a certain set of skills. This will
demonstrate the algorithms for creating instances from robot
types (HumanoidRobot) and for adding skills to a robotic
structure.

1) Instantiation of a robot type: When the user selects a
certain robot type in the application, Algorithm 1 is executed.
For example, if the application is requested to create a
HumanoidRobot configuration, the algorithm moves from top

(RobotO) to bottom (HumanoidRobot) through the path of
the taxonomy shown in Figure 2. The parts described in the
axioms defining each subclass are incorporated, but ignoring
already included parts:

Fig. 4. Instance of a HumanoidRobot automatically generated from
RobotTypeA taxonomy and axioms.

1) As a LeggedRobot, the robot must have at least one leg.
Therefore, the algorithm creates the RobotTrunk and
includes a RobotLeg that have a relation articulatedTo
with the RobotTrunk.

2) Then, as a BipedRobot, the algorithm infers that there
should be two RobotLegs articulatedTo the Robot-
Trunk. As one of them already exists, only one more
is added.

3) Finally, as a HumanoidRobot the algorithm inserts
two RobotArms and a RobotHead that have a relation
articulatedTo with the RobotTrunk.

The result is the instance of Figure 4.
2) Addition of skills: After having created the robot con-

figuration, we can add skills to it to provide new capabilities.
These skills, in turn, need devices and/or robot parts that
must be added to the structure. We have added the following
skills to the humanoid robot base:



1) RobotWalk requires having feet3. These could have
an articulatedTo relation with the RobotLegs, but they
can also be connectedTo a RobotJoint that is, in turn,
connectedTo the RobotLeg (that is exactly the content
of the axiom involving articulatedTo relation). Also the
ability to perform any movement requires that an Ac-
tuatorSystem be part of the legs and an ElectricSystem
powering them. Finally, the coordination of the move-
ments of each robot part needs a ProcessingSystem.

2) RobotGrab demands a mechanism of grasping objects.
This could be a RobotHand articulatedTo a RobotArm.
In principle, there is no need for two hands in order
to grab something, hence the designer places a single
hand in one of the RobotArms.

3) RobotVision involves a perception system such as a
CameraS . This is not a skill by itself, but a requisite
for many other skills such as face recognition or object
detection which are yet to be added to the ontology.

4) RobotCommunication, understood as verbal communi-
cation between a human and a robot, needs a DeviceS
for listening, such as a Microphone, and another for
talking, such as a LoudSpeaker.

The complete robot structure instance is shown in Figure 5.

Fig. 5. Instance of a HumanoidRobot with a set of skills. The color code
indicates the parts added to the robot with each skill (in order).

V. DISCUSSION AND CONCLUSIONS

A procedure for creating conceptual robotic structures
have been presented in this paper. It bases upon the knowl-
edge stored in an ontology, which, with an adequate set of
axioms on addition to a well structured taxonomy, can be
used to generate robots that are able to carry out a certain
set of skills demanded by the user.

An application to edit and debug SUO-KIF ontologies has
been developed for helping in the process of creation. Also a

3Following the Merriam-Webster dictionary definition (’to move along
on foot’), we assume that the act of walking does need feet. Otherwise, it
would be a different type of translocation.

robot designer GUI has been presented. This designer allows
three different modes to creates the conceptual structures of
a robot: configuration-based, skills-based and free mode. A
beta version of both the application and the ontology can be
found in an open GitHub repository4.

Still, we are aware that there is a considerable gap
for these conceptual structures to materialize into physical
designs that are effectively able to perform the demanded
skills as promised. However, we consider that evolutionary
algorithms, taking these structures as their initial population,
(jointly with a versatile modular robotic platform such as
ParMoR), might be able to find constructable solutions in an
automated manner.

REFERENCES

[1] R. Desai, M. Safonova, K. Muelling, and S. Coros, “Automatic design
of task-specific robotic arms,” arXiv preprint arXiv:1806.07419, 2018.

[2] A. Q. Nilles, D. A. Shell, and J. M. O’Kane, “Robot design: For-
malisms, representations, and the role of the designer,” arXiv preprint
arXiv:1806.05157, 2018.

[3] H. Li, H. Wei, J. Xiao, and T. Wang, “Co-evolution framework of
swarm self-assembly robots,” Neurocomputing, vol. 148, pp. 112–121,
2014.

[4] A. Spielberg, B. Araki, C. R. Sung, R. Tedrake, and D. Rus,
“Functional co-optimization of articulated robots,” in 2017 IEEE
International Conference on Robotics and Automation, ICRA 2017,
Singapore, Singapore, May 29 - June 3, 2017, 2017, pp. 5035–5042.
[Online]. Available: https://doi.org/10.1109/ICRA.2017.7989587

[5] T. F. Nygaard, C. P. Martin, J. Torresen, and K. Glette, “Exploring
mechanically self-reconfiguring robots for autonomous design,” arXiv
preprint arXiv:1805.02965, 2018.

[6] IEEE Standard Ontologies for Robotics and Au-
tomation, IEEE Std., 2015. [Online]. Available:
http://ieeexplore.ieee.org/document/7084073/

[7] V. A. Jorge, V. F. Rey, R. Maffei, S. R. Fiorini, J. L.
Carbonera, F. Branchi, J. P. Meireles, G. S. Franco, F. Farina,
T. S. da Silva, M. Kolberg, M. Abel, and E. Prestes,
“Exploring the IEEE ontology for robotics and automation for
heterogeneous agent interaction,” Robotics and Computer-Integrated
Manufacturing, vol. 33, pp. 12 – 20, 2015, special Issue on
Knowledge Driven Robotics and Manufacturing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0736584514000660

[8] J. Crespo, R. Barber, and O. M. Mozos, “Relational model for robotic
semantic navigation in indoor environments,” Journal of Intelligent
& Robotic Systems, vol. 86, no. 3, pp. 617–639, Jun 2017. [Online].
Available: https://doi.org/10.1007/s10846-017-0469-x

[9] H. Azevedo, J. P. R. Belo, and R. A. F. Romero, “Cognitive and
robotic systems: Speeding up integration and results,” in 2017 Latin
American Robotics Symposium (LARS) and 2017 Brazilian Symposium
on Robotics (SBR), Nov 2017, pp. 1–6.

[10] S. R. Fiorini, J. Bermejo-Alonso, P. Goncalves, E. P. de Freitas, A. O.
Alarcos, J. I. Olszewska, E. Prestes, C. Schlenoff, S. V. Ragavan,
S. Redfield, B. Spencer, and H. Li, “A suite of ontologies for robotics
and automation,” IEEE Robotics and Automation Magazine, 2017.

[11] N. Cross, “Designerly ways of knowing: Design discipline versus
design science,” Design issues, vol. 17, no. 3, pp. 49–55, 2001.

[12] F. Ramos, A. Olivares-Alarcos, A. S. Vázquez, and R. Fernández,
“What can ontologies do for robot design?” in ROBOT 2017: Third
Iberian Robotics Conference, A. Ollero, A. Sanfeliu, L. Montano,
N. Lau, and C. Cardeira, Eds. Cham: Springer International Pub-
lishing, 2018, pp. 465–476.

[13] F. Ramos, A. S. Vázquez, R. Fernández, and A. Olivares-Alarcos,
“Ontology based design, control and programming of modular robots,”
Integrated Computer-Aided Engineering, vol. 25, no. 2, pp. 173–192,
2018. [Online]. Available: https://doi.org/10.3233/ICA-180569

4https://github.com/CrisFisher/Ontology-for-Robotics


