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Abstract

The current fourth industrial revolution, or ‘Industry 4.0’ (I4.0), is driven by digital data,
connectivity, and cyber systems, and it has the potential to create impressive/new business
opportunities. With the arrival of Industry 4.0, the scenario of various intelligent systems
interacting reliably and securely with each other becomes a reality technical systems need to
address. One major aspect of I4.0 is to adopt a coherent approach for the semantic communication
in between multiple intelligent agents, which could be human and/or artificial (software or
hardware) ones. For this purpose, ontologies can provide the solution by formalizing the smart
manufacturing knowledge in an interoperable way. Hence, this paper presents the few existing
ontologies for industry 4.0, along with the current state of the standardization effort in the factory
4.0 domain and examples of real-world scenarios for Industry 4.0.
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1 Introduction

1.1 What is Industry 4.0?

Industry 4.0 (I4.0) is a term coined to represent the fourth industrial revolution based on the latest
technological advances. While it represents an application of the concept of cyber-physical systems
(CPS), understood as its core (Lee et al., 2015), it goes far beyond CPS, involving advanced data
communication systems (Wollschlaeger et al., 2017), embedded intelligence (Wang et al., 2016),
and data semantics standardization (Fiorini et al., 2017).

Industry 4.0, which was initiated at the beginning of this decade by national programs (Haupert
et al., 2014) called Smart Manufacturing Leadership Coalition1 in the US and Industrie 4.0 2 in
Germany, has already proven to be a no-way-back trend that has the potential to take today’s
Industry to a higher level of efficiency, performance, and productivity and it has started to be
used by companies such as ABB and Siemens(Drath and Horch, 2014).

Indeed, Industry 4.0 scenarios can present e.g. physical objects manipulated by means of their
virtual representations, which by their turn provide services, that at the end support applications
for highly detailed product customization, precise and timely accurate logistics supply chains,
and efficient product delivery. Everything related to the production could be represented in the
cyberspace, from the smallest and least significant raw material or component up to the complete
product and all the machinery involved in its production (Rosen et al., 2015). This setup relies
on fast and efficient data transmission, supported by wireless communication technologie, e.g.
based on 5G (Rappaport et al., 2013), in which part of the products could decide autonomously
their best and most optimized way through the production process, exchanging data with other
components and elements of the industrial environment.

Hence, in an Industry 4.0 scenario, the manufacturing process is the main activity and, among
several equipments, autonomous robots are extensively used towards manufacturing performance
and revenue improvements (Kattepur et al., 2018), (Zhang et al., 2019). This helps to explain
why power consumption related to motors represents 2/3 of the electrical power consumed by
the industry sector (Saidur, 2010). Combined with currently available techniques of data analysis
and cognition, this creates new possibilities of interoperability, modularity, distributed processing
and integration in real time with other systems for industrial processes. In fact, those possibilities
constitute the core concept of Industry 4.0 (Hermann et al., 2016).

1.2 Technologies for Industry 4.0

Industry 4.0 or smart factory (Kannengiesser and Muller, 2013) is based on new and radically
changed processes in manufacturing industry. It represents a number of contemporary automa-
tion, data exchange, and manufacturing technologies (Hermann et al., 2016), such as virtual
enterprise (Smirnov et al., 2010), cloud manufacturing (Xie et al., 2017), Internet of Things (IoT),
also named by Cisco as Internet of Everything (Zheng et al., 2014), and its emerging concepts
Industrial Internet of Things (IIoT) (Civerchia et al., 2017), or Industrial Internet as used in the
US by General Electric (GE) to represent the realization of IoT for Industrial applications.

In particular, data is gathered from suppliers, customers and the plant/factory itself and
evaluated before being linked up with real production. The latter is increasingly using new
technologies such as smart sensors, 3D printing, next-generation robots, cloud computing, and
data analytics. This results in flexible and adaptive production processes that are fine-tuned,
adjusted, or set up differently in real-time (Hermann et al., 2014).

Traditional industry relies on a well-defined 5-layer automation architecture. The machine
level (field devices such as sensors and actuators) is at the lowest level and sends data via analog
signals to logical controllers such as the Programmable Logic Controller (PLC) in the station level.
Supervisor Control and Data Acquisition (SCADA) systems in the cell level perform (remote)
1http://smartmanufacturingcoalition.org/
2http://www.hightech-strategie.de/de/59.php
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control tasks. Manufacturing Execution Systems (MES) in the process control level allow users
to perform complex tasks such as production scheduling. Top-level Enterprise resource planning
(ERP) or factory operation management level allows the management reporting and shares
manufacturing data such as the order status with other systems (Wollschlaeger et al., 2017).

The fourth industrial revolution Industry 4.0 represents a new paradigm shift from the
centralized to the decentralized industry, relying on the cyber-physical-based automation, where
sensors send data directly to the cloud and where services such as monitoring, control, and
optimization automatically subscribe to the necessary data in real-time. Hence, I4.0 involves
flexible production networks that require horizontal integration across the company, while any
production-related information exchanged in the network must be vertically forwarded to the
corresponding service endpoints of the local production system (Wally et al., 2017). The ultimate
goal of this emerging technology is to improve the work conditions and to increase productivity,
speed, precision, repeatability, reliability, flexibility and competitiveness. In the coming years
these technologies will be seen as a viable alternative to the current manufacturing processes,
and will enable mass customization, faster production, better quality, increased productivity, and
improved decision making (Da Xu and He, 2014).

It is worth noting that mass customization can allow the production of small lots at reasonable
cost due to the ability to rapidly configure machines in order to adapt to the customer-supplied
specifications and additive manufacturing (Wang et al., 2016). On the other hand, data-driven
supply chains can speed up the manufacturing process by an estimated 120% in terms of time
needed to deliver orders and by 70% in time to get products to market (Davies, 2015). Thence,
Industry 4.0 technologies aims to improve the product quality and dramatically reduce the costs of
scrapping or reworking defective products. Predictive maintenance and self-healing technologies
in Industry 4.0 intend to enable plants/factories to keep running in order to guarantee the
productivity. Industry 4.0 technologies could allow individuals and companies to share access
to products, services, and experiences, enabling ‘sharing economy’ as a new business model.
With access to factory and cross-market data, decision makers can predict, response, and adapt
to factory needs and market trends in an accurate and timely manner. Some estimates indicate
that smart factory technology will have global market size of 62.98 billion USD by 2019 and 74.80
Billion USD by 2022 (Markets and Markets, 2016).

1.3 Challenges of Industry 4.0

Industry 4.0 is opening the door for a new industrial revolution. In order to understand the
contributions and challenges of I4.0, and how it will influence life at different level of development,
it is important to keep in mind how revolutionary industrial changes took place and their
contribution to the evolution of technology since the first industrial revolution. Britain was
the birthplace of the first technological revolution which emerged in late 18th century with the
invention of the steam engine and the introduction of new mechanical production facilities. The
second industrial revolution encompassed at the end of the 19th century the development of
electrical, chemical, and motor-vehicle engineering sectors, while the third industrial revolution
came up with developments in the electronic and aerospace sectors, leading to the omnipresence
of IT systems and production automation (MacDonald, 2016).

The fourth industrial revolution is initiating the use of Cyber Physical Systems (CPS) (Lee
et al., 2015) and is focused on the development of new generation of intelligent and integrated
technologies for smart manufacturing (Ivezic and Ljubicic, 2016), seeking to optimize its planning
and usage across different industrial domains such as oil and gas industry (Du et al., 2010), (Guo
and Wu, 2012), mining (Xue and J.Chang, 2012), energy (Teixeira et al., 2017), steel production
(Dobrev et al., 2008), construction (Sorli et al., 2006), aviation (Hoppe et al., 2017), (Lehmann
et al., 2018), automotive industry (Phutthisathian et al., 2013), electronic industry (Liu et al.,
2005a), chemical industry (Natarajan et al., 2011), process engineering (Wiesner et al., 2010), etc.
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In addition, the concept of virtual production is considered to be the key for modelling production
aiming for zero defects (MacDonald, 2016).

Hence, the driving force behind the development of I4.0 is the rapidly increasing digitization of
the economy and society, in the sectors of agriculture (Jayarathna and Hettige, 2013), production
(Meridou et al., 2015), and services, e.g. banking (Atkinson et al., 2006), telecom (Agrawal et al.,
2008), tourism (Fang et al., 2016), or insurance (Koetter et al., 2019).

I4.0 aim is to integrate the state of the art of communication technologies such as cloud
(Xu, 2012),(Xie et al., 2017), IoT (Wan et al., 2018a), (Cagnin et al., 2018) with the new
trends of evolved intelligent industrial technologies, such as new-generation intelligent agents
(Kannengiesser and Muller, 2013), Internet of Robotics Things (IoRT) (Ray, 2016), Augmented
Reality (AR) and Virtual Realty (VR) (Flatt et al., 2015), (Ivaschenko et al., 2018).

Despite the benefits and advances promised by Industry 4.0, the players in this arena have a
wide range of challenges to cope with, from human-robot interaction (HRI) (Jost et al., 2017),
(Calzado et al., 2018) to data analysis (Xu and Hua, 2017), (Li and Niggemann, 2018). On the
other hand, wireless communication are also an important factor in I4.0. With 5G networks still
under development (Nordrum and Clark, 2017), other wireless technologies are being adopted
in the meantime, leading to the need for networks coexistence solutions (de Moura Leite et al.,
2017). Furthermore, I4.0 requires the understanding of data heterogeneity in the context of cyber-
physical systems integration (Jirkovsky et al., 2017), (Matzler and Wollschlaeger, 2017) as well
as the interoperability (Salminen and Pillai, 2007), (Nilsson and Sandin, 2018) within the agent-
based ecosystem (Kao and Chen, 2010) for unambiguous communication (Zhang et al., 2018),
efficient collaboration (Olszewska, 2017) and cooperation (Hildebrandt et al., 2017). Thence,
information and data used for smart manufacturing should follow a semantic standard (Macia-
Perez et al., 2009) throughout the whole industrial environment.

In particular, ontologies are a powerful solution to capture (Liandong and Qifeng, 2009) and
to share the common knowledge (Hoppe et al., 2017) among the distributed partners of the
I4.0 technology, leading e.g. to Context-as-a-Service (CaaS) platforms (Hassani et al., 2018).
Indeed, ontologies aim to make domain knowledge explicit and remove ambiguities, agree on
the same definitions, be designed in a modular way, enable machines to reason, and enable
knowledge sharing between machines and humans (Persson and Wallin, 2017) and in between
machines (Olszewska and Allison, 2018). Moreover, ontologies for the Industry 4.0 are required
to be business focused, promote cooperation with customers and partners (Persson and Wallin,
2017) and, on the other hand, meet ontological, autonomous robotic requirements (Bayat et al.,
2016). Furthermore, ontologies need to analyze and reuse domain knowledge by using present
ontologies (Persson and Wallin, 2017).

Focusing on those characteristics, this paper approaches the Industry 4.0 theme by an
ontological perspective, in which the consistent and standardized data semantics mandatory
requirement has to be met. The goal of our work is to contribute towards the effort of
unambiguously representing domain knowledge in order to assist I4.0 practitioners in the
development of coherent and efficient systems. The contribution proposed in this paper is an
ontological perspective of the Industry 4.0 domain, with a highlight on the Autonomous Robotic
facet of I4.0.

The rest of the paper is structured as follows. Section 2 presents existing ontologies for the
Industry 4.0 domain, along with a literature overview about relevant standardization efforts in
the smart manufacturing field, with an emphasis on its Autonomous Robotic aspect. Section 3
describes real-world case studies providing potential applications for the use of I4.0 ontologies,
while Section VI concludes the work with reflections and future directions.
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2 Industry 4.0 Ontologies

2.1 I4.0 Ontological Frameworks

Ontologies consist in a formal conceptualization of the knowledge representation and provide the
definitions of the concepts and relations capturing the knowledge of a domain in an interoperable
way (Wang et al., 2010).

The domain of Industry 4.0 or Factory 4.0 or Smart manufacturing consists of concepts
related, on one hand, to business services (Wally et al., 2017), encompassing automatization
of the project management (Martin-Montes et al., 2017), organizational management (Izhar and
Apduhan, 2017), customer satisfaction management (Kim and Lee, 2013), (Daly et al., 2015), risk
management (Atkinson et al., 2006), virtualization of operations (Jiang et al., 2004), (Smirnov
et al., 2010), such as billing (Agrawal et al., 2008), ticketing (Vukmirovic et al., 2006), generation
of recommendations (Lorenzi et al., 2011), and decision-making aids (Koetter et al., 2019).

On the other hand, production services (Wally et al., 2017) involve abstractions of manu-
facturing processes (Brodsky et al., 2016), (Tang et al., 2018), such as production management
(Yusupova et al.), product compliance (Disi and Zualkernan, 2009), resource reconfiguration (Wan
et al., 2018b), decision support (Arena et al., 2017), and intelligent-based automatization of chain
processes (Muller et al., 2018), such as assembly (Merdan et al., 2008), (Cecil et al., 2018) and/or
diassembly (Koppensteiner et al., 2011), packaging (Wan et al., 2019), shipping (Phutthisathian
et al., 2013) as well as system diagnosis (Bunte et al., 2016), product control (Bunte et al., 2016),
safety controls (Akbari et al., 2010), and security inspections (Mozzaquatro et al., 2016).

For this purpose, in the last decade, ontologies have been developed for one specific industrial
domain such as aviation (Keller, 2016), aeropsace (Kossmann et al., 2009), construction (Liao
et al., 2009), steel production (Dobrev et al., 2008), chemical engineering (Vinoth and Sankar,
2016), (Feng et al., 2018), oil industry (Du et al., 2010), (Guo andWu, 2012), energy (Santos et al.,
2018), electronics (Liu et al., 2005a). On the other hand, ontologies have been used for one specific
manufacturing process such as packaging (Liu et al., 2005b), process engineering (Wiesner et al.,
2010), process compliance (Disi and Zualkernan, 2009), risk management (Atkinson et al., 2006),
safety management (Hooi et al., 2012), customer feedback analysis (Kim and Lee, 2013), (Daly
et al., 2015), organizational management (Grangel-Gonzalez et al., 2016), (Izhar and Apduhan,
2017), project management (Cheah et al., 2011), product development (Zhang et al., 2017),
maintenance (Haupert et al., 2014), resource reconfiguration (Wan et al., 2018b), production
scheduling (Kourtis et al., 2019). Other ontologies have been focused on one service, e.g. ticketing
(Vukmirovic et al., 2006), or on one manufacturing concept, e.g. information flow (Bildstein and
Feng, 2018), information security (Mozzaquatro et al., 2016), data integration (Yusupova et al.).

More recently, two ontological framework tending to cover the wider domain of smart
manufacturing have been proposed. On one hand, Cheng et al. (2016) provided a model of the
production line using a combination of five ontologies, namely, device ontology (with concepts
such as Machine), process ontology (with a taxonomy of the different Operations performed by
the technical equipment), parameter ontology (with concepts such as Quality of Service), product
ontology (with the product information), and the base ontology (integrated the four other and
defining the concept Order). On the other hand, Engel et al. (2018) proposed a three-layer
ontology for batch process plants. The first layer, or application layer, contains the operations;
the second layer, or domain layer, the architecture, while the third layer, or upper layer, refers
to an upper ontological model, describing general system characteristics and relations.

These ontologies have been proven to bring some advances in the field, but they have a limited
scope and/or a basic vocabulary. Hence, the effort to standardize the whole domain is a huge
enterprise, and some current results of these standardization work are reported in Section 2.2.
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2.2 I4.0 Ontological Standards

2.2.1 Ontological Standard Effort
As Industry 4.0 relies heavily on robotic agents which have to evolve and perform the main
operations in smart manufacturing environment and which are solicited to communicate with
human operators, customers, or with diverse distributed partners, the standardization of
knowledge representation is a key element facing I4.0 development and is required to be addressed
quickly and efficiently to avoid accumulated difficulty at later stages of development. Hence, the
ontological standardization effort for I4.0 builds upon the IEEE 1872-2015 Standard Ontologies
for Robotics and Automation (IEE, 2015), which establishes a series of ontologies about the
Robotics and Automation (R&A) domain (Fiorini et al., 2017) that can be extended to the
Industry 4.0. by incorporating new I4.0-specific ontological concepts, as described in the next
paragraphs.

CORA Ontology The Core Ontology for Robotics and Automation (CORA) (Prestes et al.,
2013) developed within the IEEE 1872-2015 Standard Ontologies for Robotics and Automation
(IEE, 2015) is a core ontology for robotics. A core ontology specifies concepts that are general in
a whole domain such as Robotics. In the case of CORA, it defines concepts such as Robot, Robot
Group, and Robotic System. Its role is to serve as basis for other more specialized ontologies in
R&A, currently developed within IEEE P1872.1 and P1872.2 standardization efforts, and focused
on Robot Task Representation and Autonomous Robotics, respectively. Moreover, it determines
a set of basic ontological commitments, which should help robot developers and other ontologists
to create models about robots (Bayat et al., 2016).

ROA Ontology The Ontology for Autonomous Robotics (ROA) (Olszewska et al., 2017)
defines robotic notions identified as fundamental (Ivezic and Ljubicic, 2016) for Autonomous
Robotics. Hence, ROA provides the definitions of behavior, function, goal, and task concepts and
re-uses ontologies such as the SUMO upper-ontology, the CORA core ontology, and specialized
ontologies such as the Spatio-Temporal Visual Ontology (STVO) (Olszewska, 2011).

ORArch Ontology The Ontology for Robotic Architecture (ORArch) specifies notions related
to hardware and software, as well as how these can be represented together in mixed architecture
descriptions. Moreover, ROA aims to allow one to describe multiple architectural viewpoints on
the same robots, combining hardware and software devices.

Figure 1 depicts the main concepts of this ontology. The top concepts are part of the top-level
ontology. The ontology divides the reality in endurants, perdurants and abstracts. Endurant and
perdurants are entities that are situated in time, while abstract entities are not. Perdurants have
temporal parts, such as processes and events, while endurants have no temporal parts, such as
physical and social objects. Abstract entities are formal entities, such as logical and mathematical
entities.

The main aspect of the ontology is the separation between physical and virtual endurants.
Physical endurants are objects of everyday life. Virtual endurants are endurants that emerge
from computational devices in operation. Computation devices are any entity that computes
a computable function. Examples of virtual endurants are typical entities related to running
software, such processes, threads, components, objects and procedures, but also include virtual
reality entities.

The ontology also imports the notion of Robot from CORA. We introduced some concepts
(and axiomatization) such as Artifact to align its meaning with CORA/SUMO.

The concepts dealing with architecture is shown in Fig. 2. ORArch includes DnS ontology
for describing architecture. DnS allows the representation of descriptions without the need for
second-order languages. It has two main concepts, namely Description and Situation. A Situation
is an entity similar to a collection which aggregates (i.e. is setting for) some entities that should
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Figure 1: Concepts about hardware and software and ORArch.

be taken into consideration together for a given reason. Examples of situations is the plant or
a navigation context for a robot. A situation satisfies one or more descriptions. A descriptions
defines concepts and roles that classify elements of a situation. A description of a plant would
define the concepts of type-A product and type-B product, which classify instances of products.
A descriptions of a robot context defines concepts such as objective and obstacle, which classify
object and regions in different situations. It is important to note that instances of Concept are
distinct of the concepts that form the ontology itself. Consider the concept Mobile Robot. It
might appear in the ontology as a subclass of CORA:Robot and also an instance of RobotType.
These both entities are treated as different. In ORArch, we consider that the notion of robot
architecture has two sides. It can refer to a selection of components in a given, constructed robot,
but it can also refer to an architectural model, or description of an architecture that might be
present in different robots. These two notions are captured by the concepts (Robot Architecture)
Viewpoint and (Robot Architecture) Description.

O4I4 Ontology The Ontology for Industry 4.0 (O4I4) is dedicated to capture the I4.0 specific
domain concepts, while re-using CORA, ROA, and ORArch ontologies for the robotic facet of
smart manufacturing. It is worth noting that CORA used SUMO as the upper ontology. However,
in the light of the requirements of the suite of standardization ontologies (Fiorini et al., 2017), it is
planned that SUMO becomes optional as a top-level ontology in P1872.2. One reason is that some
users of IEEE 1872 (IEE, 2015) voiced their desire to use CORA with other top-level ontologies.
On the hand, SUMO is too big and complex for customizable projects. Hence, with O4I4 which
aims to be a business-focused ontology, we began defining a minimal top-level ontology to support
our development. Such top-level ontology is also optional, but also should be easier to map to
other top-level ontologies, if needed.

The new I4-specific concepts appear in Fig 1 and their definition is as follows:

• Computable Function is an Abstract entity representing a given computable function with
defined inputs and output.

• Computational Device Operation is a Perdurant denoting the functioning of a computational
device.

Moreover, in the ontological standard, the concept of Computable Service is defined as a
Computational Device Operation which captures the notion of the process in which an agent has
to compute a external request (with a possible input) and to deliver a result (output). It exists
from the moment in which the requester starts being served not from the moment in which the
agent is requested. However, a Computable Service can only exist if the agent has the capability
of performing that service. It is worth noting that a Computable Service is a sort of service from
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Figure 2: Concepts about robot architecture viewpoint and description in ORArch.

a computational science point of view. Other classes of services could be developed in the future
to cover notions related to robotic service, etc.

2.2.2 Ontological Standard Roadmap
To sum up, the standard design using formal models consists of (i) the development of standard
vocabularies for robotic concepts; (ii) the development of a functional ontology for Autonomous
Robotics; (iii) the validation of relationship using functions as a basis for relationship checking;
and (iv) the use of developed vocabularies and ontology for Industry 4.0 applications.

The benefits of such design are twofold. On one hand, academics can discuss concepts
unambiguously on the topic which will pave way for further research and investigation on the
topic (Bermejo-Alonso et al., 2018). On the other hand, Industry practitioners can use these
to conceptualize implementation scenarios (Olszewska et al., 2018). Indeed, as every scenario
considered within the framework of the Industry 4.0 includes different entities which communicate
and cooperate with each other, the main role of the presented ontological standard is to facilitate
that exchange, as exemplified in Section 3.

3 Industry 4.0 Scenarios

3.1 Smart-Rapid Prototyping Scenario

In Industry 4.0, 3D printing/additive manufacturing is a key-technology enabler for smart
factories. This technology is also known as rapid prototyping, digital fabrication, solid imaging,
solid free form fabrication, layer based manufacturing, laser prototyping and free form fabrication.
The process involves building prototypes or working models in a relatively short time to help the
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creation and the testing of various design features, ideas, concepts, functionality, and in certain
instances, the outcome and performance (Bagaria et al., 2011). Nowadays, there is a growing need
and expectation of more rapid bespoke production in order to both deliver the rapid prototyping
of more products and variants and to support specialist products and obsolete parts globally and
locally. Rapid prototyping provides a viable way to quickly and cost effectively deliver components
or complete products and decrease the holding and transporting stock (and obsolescence concerns)
(Burke et al., 2015).

In a smart rapid prototyping scenario (Fig. 3), a customer with predefined profile accesses a
web service to send a query to the manufacturing facility. This query contains the specifications of
the part to be manufactured by the smart rapid prototyping facility including the digital model
uploaded by the customer or selected from an online digital model repository, as well as the
material, the color and the number of units required. The customer’s query is then parsed and
directed to the rapid prototyping unit that generates or retrieves the solid model to be sent to
the manufacturing modeler that create the 3D physical model. Post-processing such as surface
finishing is then applied to create the final prototype that is shipped to the customer via logistic
4.0 technologies such as connected trucks, autonomous ground, or aerial vehicles. Moreover, the
customer is able to track all the manufacturing steps from the receipt of the request to the delivery
of the final prototype.

In this scenario, the exchange of information and resources among those entities becomes
crucial to obtain a good performance of the system as a whole, and the ontology approach can
facilitate this exchange of information through the use of the defined concepts like Computable
Function, Computational Device Operation, and Computable Service. Moreover, the ontology
contributes towards the uniformization of the attributes required within the process as well as
their unambiguous interpretation by both the machines and the customer.

3.2 UAV’s Good Delivery Scenario

Another crucial element of Industry 4.0 is the efficient good delivery. Thence, let’s consider
a scenario where an operator has to supervise goods’ deliveries via unmanned aerial vehicles
(UAVs), assigning different UAVs to different delivery tasks. These UAVs have a fault detection
system that can detect and inform the operator about degradation in performance. Based on
that information, the operator has to infer if that particular drone can be kept in operation or it
has to be brought back for maintenance. This kind of reasoning requires considerable amount of
expertise, since it has to be precise and relatively quick. This might hinder the adoption of UAVs
by non-specialized business, such as pizza delivery, for instance.
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An ontological approach can help this human-robot system in many aspects and as a
consequence, enable the business to grow. For example, the ROA ontology (Olszewska et al., 2017)
(described in Section 2.2) provides formal concepts such as of tasks, functions, and behaviors as
well as brings spatio-temporal relations. In this scenario, this can aid, on one hand, the robot to
unambiguously communicate the status information about itself to a human operator and, on the
other hand, this can aid the operator’s decision making. Indeed, through automated reasoning,
the robotic system can display more meaningful and simpler information. For instance, consider
that the malfunctioning UAV was designed with the function of delivering packages in confined
places, such as corridors. As its motors degrade, it starts to display different behaviors, such as
small, but sudden changes in its trajectory, which it is able to correct if enough space is available.
In a non-intelligent system, the operator alone has to check if displayed behavior is compatible
with the designed function of the robot and decide about grounding it or not. Depending on the
knowledge or workload of the operator, these can become expansive/dangerous operations. With
an ontology representing the robot architecture, the system can also autonomously classify the
erratic movements and infer whether they fulfill the designed function of delivering pizza. This
system can them inform the user directly of this fact, unloading the operator of having to decode
low-level warning signals and decide the best course of action, which improves the operator’s
general situation awareness.

4 Conclusions

The use of robotic agents in context of Industry 4.0 has triggered, among others, the need
to develop an interoperable communication model to interconnect them efficiently as well as
an unambiguous, semantic knowledge conceptualization of the smart manufacturing domain to
ensure a coherent and effective human-robot collaboration. For this purpose, ontologies have
been identified as a possible solution for the representation of the vocabulary describing the
key concepts related to this fourth industrial revolution. Thence, this paper presents the current
state of ontologies for Industry 4.0, covering both existing ontological frameworks and ontological
standardization efforts in that field. Moreover, illustrative I4.0 scenarios have been provided to
raise the awareness of practitioners about the potential of using ontologies for Industry 4.0.

References

IEEE Standard Ontologies for Robotics and Automation, 2015.

H. Agrawal, G. Chafle, S. Goyal, S. Mittal, and S. Mukherjea. An enhanced extract-transform-
load system for migrating data in telecom billing. In IEEE International Conference on Data
Engineering, pages 1277–1286, 2008.

A. Akbari, A. Setayeshmehr, H. Borsi, E. Gockenbach, and I. Fofana. Intelligent agent-based
system using dissolved gas analysis to detect incipient faults in power transformers. IEEE
Electrical Insulation Magazine, 26(6):27–40, 2010.

D. Arena, D. Kiritsis, C. Ziogou, and S. Voutetakis. Semantics-driven knowledge representation
for decision support and status awareness at process plant floors. In IEEE International
Conference on Engineering, Technology and Innovation, pages 902–908, 2017.

C. Atkinson, C. Cuske, and T. Dickopp. Concepts for an ontology-centric technology risk man-
agement architecture in the banking industry. In IEEE International Enterprise Distributed
Object Computing Conference Workshops, pages 21–21, 2006.

V. Bagaria, D. Rasalkar, J. Ilyas, and S. Bagaria. Medical applications of rapid prototyping-a
new horizon. INTECH Open Access, 2011.



Ontologies for Industry 4.0 11

B. Bayat, J. Bermejo-Alonso, J. L. Carbonera, T. Facchinetti, S. Fiorini, P. Goncalves, V. A. M.
Jorge, M. Habib, A. Khamis, K. Melo, B. Nguyen, J. I. Olszewska, L. Paull, E. Prestes,
V. Ragavan, S. Saeedi, R. Sanz, M. Seto, B. Spencer, A. Vosughi, and H. Li. Requirements for
building an ontology for autonomous robots. Industrial Robot: An International Journal, 43
(5):469–480, 2016.

J. Bermejo-Alonso, A. Chibani, P. Goncalves, H. Li, S. Jordan, A. Olivares, J. I. Olszewska,
E. Prestes, S. R. Fiorini, and R. Sanz. Collaboratively working towards ontology-based
standards for robotics and automation. In Proceedings of the IEEE International Conference
on Intelligent Robots and Systems (IROS), 2018.

A. Bildstein and J. Feng. Using ontologies for representing classifications of an information flow
based matching framework for smart manufacturing. In IEEE International Conference on
Engineering, Technology and Innovation, pages 1–8, 2018.

A. Brodsky, M. Krishnamoorthy, W. Z. Bernstein, and M. O. Nachawati. A system and
architecture for reusable abstractions of manufacturing processes. In IEEE International
Conference on Big Data, pages 2004–2013, 2016.

A. Bunte, A. Diedrich, and O. Niggemann. Integrating semantics for diagnosis of manufacturing
systems. In IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), pages 1–8, 2016.

R. Burke, A. Mussomeli, S. Laaper, M. Hartigan, and B. Sniderman. Smart Factory: Connecting
data, machines, people and processes. Technical Report. Deloitte Insights, 2015.

R. L. Cagnin, I. R. Guilherme, J. Queiroz, B. Paulo, and M. F. O. Neto. A multi-agent system
approach for management of industrial iot devices in manufacturing processes. In IEEE
International Conference on Industrial Informatics (INDIN), pages 31–36, 2018.

J. Calzado, A. Lindsay, C. Chen, G. Samuels, and J. I. Olszewska. SAMI: Interactive, multi-
sense robot architecture. In Proceedings of the IEEE International Symposium on Intelligent
Engineering Systems Proceedings, pages 317–322, 2018.

J. Cecil, S. Albuhamood, and A. Cecil-Xavier. An industry 4.0 cyber-physical framework for micro
devices assembly. In IEEE International Conference on Automation Science and Engineering,
pages 427–432, 2018.

Y.-N. Cheah, S. B. Khoh, and G. B. Ooi. An ontological approach for program management
lessons learned: Case study at motorola penang design centre. In IEEE International
Conference on Industrial Engineering and Engineering Management, pages 1612–1616, 2011.

H. Cheng, P. Zeng, L. Xue, Z. Shi, P. Wang, and H. Yu. Manufacturing ontology development
based on industry 4.0 demonstration production line. In IEEE International Conference on
Trustworthy Systems and their Applications, pages 42–47, 2016.

F. Civerchia, S. Bocchino, C. Salvadori, E. Rossi, L. Maggiani, and M. Petracca. Industrial
internet of things monitoring solution for advanced predictive maintenance applications.
Journal of Industrial Information Integration, 7(Supplement C):4–12, 2017.

L. Da Xu and S. He, W.and Li. Internet of Things in industries: A survey. IEEE Transactions
on industrial informatics, 10(4):2233–2243, 2014.

M. Daly, F. Grow, M. Peterson, J. Rhodes, and R. L. Nagel. Development of an automated
ontology generator for analyzing customer concerns. In IEEE Systems and Information
Engineering Design Symposium, pages 85–90, 2015.



12 ragavan et al

R. Davies. Smart Factory Market. Briefing September 2015, PE 568.337, European Parliament.
Members’ Research Service, 2015.

A. F. C. de Moura Leite, M. B. Canciglieri, A. L. Szejka, and O. C. Jr. The reference view for
semantic interoperability in integrated product development process: The conceptual structure
for injecting thin walled plastic products. Journal of Industrial Information Integration, 7
(Supplement C):13–23, 2017.

E. O. Disi and I. A. Zualkernan. Compliance-oriented process maps and sla ontology to facilitate
six sigma define phase for sla compliance processes. In IEEE International Conference on
Management and Service Science, pages 1–4, 2009.

M. Dobrev, D. Gocheva, and I. Batchkova. An ontological approach for planning and scheduling
in primary steel production. In IEEE International Conference on Intelligent Systems, pages
6.14–6.19, 2008.

R. Drath and A. Horch. Industrie 4.0: Hit or hype? [industry forum]. IEEE Industrial Electronics
Magazine, 8(2):56–58, 2014.

R. Du, Y. Li, F. Shang, and Y. Wu. Study on ontology-based knowledge construction of
petroleum exploitation domain. In IEEE International Conference on Artificial Intelligence
and Computational Intelligence, pages 42–46, 2010.

G. Engel, T. Greiner, and S. Seifert. Ontology-assisted engineering of cyber-physical production
systems in the field of process technology. IEEE Transactions on Industrial Informatics, 14
(6):2792–2802, 2018.

Y. Fang, Z. Jiaming, L. Yaohui, and G. Mei. Semantic description and link construction of smart
tourism linked data based on big data. In IEEE International Conference on Cloud Computing
and Big Data Analysis, pages 32–36, 2016.

L. Feng, G. Chen, C. Chen, L. Chen, and J. Peng. Ontology faults diagnosis model for the
hazardous chemical storage device. In IEEE International Conference on Cognitive Informatics
and Cognitive Computing, pages 269–274, 2018.

S. R. Fiorini, J. Bermejo-Alonso, P. Goncalves, E. Pignaton de Freitas, A. Olivares Alarcos, J. I.
Olszewska, E. Prestes, C. Schlenoff, S. V. Ragavan, S. Redfield, B. Spencer, and H. Li. A suite
of ontologies for robotics and automation. IEEE Robotics and Automation Magazine, 24(1):
8–11, 2017.

H. Flatt, N. Koch, C. Rocker, A. Gunter, and J. Jasperneite. A context-aware assistance
system for maintenance applications in smart factories based on augmented reality and indoor
localization. In IEEE Conference on Emerging Technologies and Factory Automation (ETFA),
pages 1–4, 2015.

I. Grangel-Gonzalez, L. Halilaj, S. Auer, S. Lohmann, C. Lange, and D. Collarana. An rdf-
based approach for implementing industry 4.0 components with administration shells. In IEEE
International Conference on Emerging Technologies and Factory Automation, pages 1–8, 2016.

R. Guo and J. Wu. Design and implementation of domain ontology-based oilfield non-metallic
pipe information retrieval system. In IEEE International Conference on Computer Science and
Information Processing, pages 813–816, 2012.

A. Hassani, A. Medvedev, P. D. Haghighi, S. Ling, M. Indrawan-Santiago, A. Zaslavsky, and P. P.
Jayaraman. Context-as-a-Service Platform: Exchange and share context in an IoT ecosystem.
In IEEE International Conference on Pervasive Computing and Communications Workshops,
pages 385–390, 2018.



Ontologies for Industry 4.0 13

J. Haupert, S. Bergweiler, P. Poller, and C. Hauck. IRAR: Smart intention recognition and action
recommendation for cyber-physical industry environments. In IEEE International Conference
on Intelligent Environments, pages 124–131, 2014.

M. Hermann, T. Pentek, and B. Otto. Industry 4.0: The new industrial revolution How Europe
will succeed. Technical Report. Think Act, 2014.

M. Hermann, T. Pentek, and B. Otto. Design principles for industrie 4.0 scenarios. In IEEE
Hawaii International Conference on System Sciences (HICSS), pages 3928–3937, 2016.

C. Hildebrandt, A. Scholz, A. Fay, T. Schroder, T. Hadlich, C. Diedrich, M. Dubovy, C. Eck, and
R. Wiegand. Semantic modeling for collaboration and cooperation of systems in the production
domain. In IEEE International Conference on Emerging Technologies and Factory Automation,
pages 1–8, 2017.

Y. K. Hooi, M. F. Hassan, and T. X. Ci. Interoperation of elements in process safety management
via ontology-oriented architecture. In IEEE International Conference on Computer and
Information Science, pages 995–999, 2012.

T. Hoppe, H. Eisenmann, A. Viehl, and O. Bringmann. Shifting from data handling to knowledge
engineering in aerospace industry. In IEEE International Systems Engineering Symposium,
pages 1–6, 2017.

A. Ivaschenko, A. Khorina, and P. Sitnikov. Accented visualization by augmented reality for
smart manufacturing aplications. In IEEE Industrial Cyber-Physical Systems, pages 519–522,
2018.

N. Ivezic and M. Ljubicic. Towards a road-mapping ontology for open innovation in smart
manufacturing. In IEEE International Conference on Collaboration Technologies and Systems,
pages 77–80, 2016.

T. A. T. Izhar and B. O. Apduhan. Configuring the relationships of organizational goals
based on ontology framework. In IEEE SmartWorld, Ubiquitous Intelligence and Computing,
Advanced and Trusted Computed, Scalable Computing and Communications, Cloud and Big
Data Computing, Internet of People and Smart City Innovation, pages 1–6, 2017.

H. M. H. R. Jayarathna and B. Hettige. Agricom: A communication platform for agriculture
sector. In IEEE International Conference on Industrial and Information Systems, pages 439–
444, 2013.

P. Jiang, Y. Peng, and Q. Mair. Concept mining for distributed alliance in multi-agent based
virtual enterprises. In IEEE International Conference on Cybernetics and Intelligent Systems,
pages 448–453, 2004.

V. Jirkovsky, M. Obitko, and V. Marik. Understanding data heterogeneity in the context of
cyber-physical systems integration. IEEE Transactions on Industrial Informatics, 13(2):660–
667, 2017.

J. Jost, T. Kirks, and B. Mattig. Multi-agent systems for decentralized control and adaptive
interaction between humans and machines for industrial environments. In IEEE International
Conference on System Engineering and Technology, pages 95–100, 2017.

U. Kannengiesser and H. Muller. Towards agent-based smart factories: A subject-oriented
modeling approach. In IEEE/WIC/ACM International Joint Conferences on Web Intelligence
(WI) and Intelligent Agent Technologies (IAT), pages 83–86, 2013.



14 ragavan et al

Y.-C. Kao and M.-S. Chen. An agent-based distributed smart machine tool service system. In
IEEE International Symposium on Computer, Communication, Control and Automation, pages
41–44, 2010.

A. Kattepur, S. Dey, and P. Balamuralidhar. Knowledge based hierarchical decomposition of
industry 4.0 robotic automation tasks. In Annual Conference of the IEEE Industrial Electronics
Society, pages 3665–3672, 2018.

R. M. Keller. Ontologies for aviation data management. In IEEE/AIAA Digital Avionics Systems
Conference, pages 1–9, 2016.

S. Kim and K. Lee. Design of the integrated monitoring framework based on ontology for
analyzing the customer feedback. In IEEE International Conference on Information Science
and Applications, pages 1–4, 2013.

F. Koetter, M. Blohm, M. Kochanowski, J. Goetzer, D. Graziotin, and S. Wagner. Motivations,
classification and model trial of conversational agents for insurance companies. In International
Conference on Agents and Artificial Intelligence, volume 1, pages 19–30, 2019.

G. Koppensteiner, R. Hametner, R. Paris, A. M. Passani, and M. Merdan. Knowledge driven
mobile robots applied in the disassembly domain. In IEEE International Conference on
Automation, Robotics and Applications, pages 52–56, 2011.

M. Kossmann, A. Gillies, M. Odeh, and S. Watts. Ontology-driven requirements engineering with
reference to the aerospace industry. In IEEE International Conference on the Applications of
Digital Information and Web Technologies, pages 95–103, 2009.

G. Kourtis, E. Kavakli, and R. Sakellariou. A rule-based approach founded on description logics
for industry 4.0 smart factories. IEEE Transactions on Industrial Informatics, 99:1–1, 2019.

J. Lee, B. Bagheri, and H.-A. Kao. A cyber-physical systems architecture for industry 4.0-based
manufacturing systems. Manufacturing Letters, 3(Supplement C):18–23, 2015.

J. Lehmann, A. Heussner, M. Shamiyeh, and S. Ziemer. Extracting and modeling knowledge
about aviation for multilingual semantic applications in industry 4.0. In IEEE International
Conference on Enterprise Systems, pages 56–60, 2018.

P. Li and O. Niggemann. A data provenance based architecture to enhance the reliability of data
analysis for industry 4.0. In IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), pages 1375–1382, 2018.

Z. Liandong and W. Qifeng. Knowledge discovery and modeling approach for manufacturing
enterprises. In IEEE International Symposium on Intelligent Information Technology Applica-
tion, pages 291–294, 2009.

K. Liao, Q. Liu, and X. Zhao. Ontology-based model of mobile knowledge service for the
inspection of construction project. In IEEE International Conference on Management and
Service Science, pages 1–5, 2009.

J. Liu, Y. Wang, J. Morris, and H. Kristiansen. Development of ontology for the anisotropic
conductive adhesive interconnect technology in electronics applications. In IEEE International
Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, pages 193–
208, 2005a.

J. Liu, Y. Wang, J. Morris, and H. Kristiansen. Ontology for the anisotropic conductive adhesive
interconnect technology for electronics packaging applications. In IEEE Conference on High
Density Microsystem Design and Packaging and Component Failure Analysis, pages 1–17,
2005b.



Ontologies for Industry 4.0 15

F. Lorenzi, S. Loh, and M. Abel. PersonalTour: A recommender system for travel packages.
In IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent
Technology, pages 333–336, 2011.

P. MacDonald. Future trends in engineering: Global urbanisation and the
fourth industrial revolution. http://www.engineersjournal.ie/2016/06/14/
future-trends-in-engineering-global-urbanisation-the-fourth-industrial-revolution/,
2016. [Online; accessed 6-October-2017].

F. Macia-Perez, V. Gilart-Iglesias, A. Ferrandiz-Colmeiro, J. V. Berna-Martinez, and J. Gea-
Martinez. Semantic-driven manufacturing process management automation. In IEEE
Conference on Emerging Technologies and Factory Automation, pages 1–8, 2009.

Markets and Markets. Industry 4.0: Digitalisation for productivity and growth. Technical Report,
Report Code: SE 3068. Markets and Markets, 2016.

A. Martin-Montes, M. Burbano, and C. Leon. Efficient services in the industry 4.0 and intelligent
management network. In IEEE International Symposium on Industrial Electronics, pages 1495–
1500, 2017.

S. Matzler and M. Wollschlaeger. Interchange format for the generation of functional elements
for industrie 4.0 components. In Annual Conference of the IEEE Industrial Electronics Society,
pages 5453–5459, 2017.

M. Merdan, G. Koppensteiner, A. Zoitl, and I. Hegny. Intelligent-agent based approach for
assembly automation. In IEEE Conference on Soft Computing in Industrial Applications,
pages 13–19, 2008.

D. T. Meridou, A. P. Kapsalis, M.-E. C. Papadopoulou, E. G. Karamanis, C. Z. Patrikakis, I. S.
Venieris, and D.-T. I. Kaklamani. An ontology-based smart production management system.
IT Professional, 17(6):36–46, 2015.

B. A. Mozzaquatro, R. Melo, C. Agostinho, and R. Jardim-Goncalves. An ontology-based security
framework for decision-making in industrial systems. In IEEE International Conference on
Model-Driven Engineering and Software Development, pages 779–788, 2016.

T. Muller, V. Hagenmeyer, A. Schmidt, S. Scholz, and A. Elkaseer. A knowledge-based decision
support system for micro and nano manufacturing process chains. In Euromicro Conference
on Software Engineering and Advanced Applications, pages 314–320, 2018.

S. Natarajan, K. Ghosh, and R. Srinivasan. An evaluation of a hierarchical multi agent
based process monitoring system for chemical plants. In IEEE International Conference on
Networking, Sensing and Control, pages 151–156, 2011.

J. Nilsson and F. Sandin. Semantic interoperability in industry 4.0: Survey of recent developments
and outlook. In IEEE International Conference on Industrial Informatics, pages 127–132, 2018.

A. Nordrum and K. Clark. Everything you need to know about 5g. IEEE Spectrum, 2017.

J. I. Olszewska. Spatio-temporal visual ontology. In EPSRC Workshop on Vision and Language
(VL), 2011.

J. I. Olszewska. Clock-model-assisted agent’s spatial navigation. In Proceedings of the
International Conference on Agents and Artificial Intelligence, volume 2, pages 687–692, 2017.

J. I. Olszewska and A. K. Allison. ODYSSEY: Software development life cycle ontology.
In Proceedings of the International Conference on Knowledge Engineering and Ontology
Development, pages 303–311, 2018.



16 ragavan et al

J. I. Olszewska, M. Barreto, J. Bermejo-Alonso, J. Carbonera, A. Chibani, S. Fiorini,
P. Goncalves, M. Habib, A. Khamis, A. Olivares, E. P. Freitas, E. Prestes, S. V. Ragavan,
S. Redfield, R. Sanz, B. Spencer, and H. Li. Ontology for autonomous robotics. In Proceedings
of the IEEE International Symposium on Robot and Human Interactive Communication (RO-
MAN), pages 189–194, 2017.

J. I. Olszewska, M. Houghtaling, P. Goncalves, T. Haidegger, N. Fabiano, J. L. Carbonera, S. R.
Fiorini, and E. Prestes. Robotic ontological standard development life cycle. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), 2018.

C. Persson and E. O. Wallin. Engineering and business implications of ontologies: A proposal
for a minimum viable ontology. In IEEE Conference on Automation Science and Engineering,
pages 864–869, 2017.

A. Phutthisathian, N. Maneerat, R. Varakulsiripunth, K. Takahashi, and Y. Kato. An ontology-
based multi agent automotive parts transportation management system. In IEEE Region 10
Humanitarian Technology Conference, pages 96–99, 2013.

E. Prestes, J. L. Carbonera, V. A. M. Fiorini, S. R.and Jorge, M. Abel, R. Madhavan, A. Locoro,
P. Goncalves, M. E. Barreto, M. Habib, et al. Towards a core ontology for robotics and
automation. Robotics and Autonomous Systems, 61(11):1193–1204, 2013.

T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, and
M. Samimi. Millimiter wave mobile communications for 5g cellular: It will work! IEEE Access,
1:335–349, 2013.

P. P. Ray. Internet of robotics things: Concept, technologies, and challenges. IEEE Access, 4:
9489–9500, 2016.

R. Rosen, G. von Wichert, G. Lo, and K. D. Bettenhausen. About the importance of autonomy
and digital twins for the future of manufacturing. IFAC Symposium onInformation Control
Problems inManufacturing, 48(3):567–572, 2015.

R. Saidur. A review on electrical motors energy use and energy savings. Renewable and
Sustainable Energy Reviews, 14(3):877–898, 2010.

V. Salminen and B. Pillai. Interoperability requirement challenges: Future trends. In IEEE
International Symposium on Collaborative Technologies and Systems, pages 265–270, 2007.

G. Santos, F.Silva, B. Teixeira, Z. Vale, and T. Pinto. Power systems simulation using ontologies
to enable the interoperability of multi-agent systems. In IEEE Power Systems Computation
Conference, pages 1–7, 2018.

A. Smirnov, K. Sandkuhl, and N. Shilov. Soa-based product knowledge management for
collaborative engineering in virtual enterprises. In IEEE International Technology Management
Conference, pages 1–8, 2010.

M. Sorli, I. Mendikoa, J. Perez, A. Soares, L. Urosevic, D. Stokic, J. Moreira, and H. Corvacho.
Knowledge-based collaboration in construction industry. In IEEE International Technology
Management Conference, pages 1–8, 2006.

H. Tang, D. Li, S. Wang, and Z. Dong. Casoa: An architecture for agent-based manufacturing
system in the context of industry 4.0. IEEE Access, 6:12746–12754, 2018.

B. Teixeira, F. Silva, T. Pinto, G. Santos, I. Praca, and Z. Vale. Toocc: Enabling heterogeneous
systems interoperability in the study of energy systems. In IEEE Power and Energy Society
General Meeting, pages 1–5, 2017.



Ontologies for Industry 4.0 17

P. Vinoth and P. Sankar. Bringing intelligent inferences through a semantic structure markup
system with the support of chemical ontologies. In IEEE International Conference on Advances
in Computer Applications, pages 60–65, 2016.

M. Vukmirovic, M. Szymczak, M. Ganzha, and M. Paprzycki. Utilizing ontologies in an agent-
based airline ticket auctioning system. In IEEE International Conference on Information
Technology Interfaces, pages 385–390, 2006.

B. Wally, C. Huemer, and A. Mazak. Aligning business services with production services: The
case of rea and isa-95. In IEEE Conference on Service-Oriented Computing and Applications,
pages 9–17, 2017.

J. Wan, B. Chen, M. Imran, F. Tao, D. Li, C. Liu, and S. Ahmad. Toward dynamic resources
management for iot-based manufacturing. IEEE Communications Magazine, 56(2):52–59,
2018a.

J. Wan, B. Yin, D. Li, A. Celesti, F. Tao, and Q. Hua. An ontology-based resource
reconfiguration method for manufacturing cyber-physical systems. IEEE/ASME Transactions
on Mechatronics, 23(6):2537–2546, 2018b.

J. Wan, S. Tang, D. Li, M. Imran, C. Zhang, C. Liu, and Z. Pang. Reconfigurable smart factory
for drug packing in healthcare industry 4.0. IEEE Transactions on Industrial Informatics, 15
(1):507–516, 2019.

G. Wang, T. N. Wong, and X. H. Wang. A negotiation protocol to support agent argumentation
and ontology interoperability in mas-based virtual enterprises. In IEEE International
Conference on Information Technology: New Generations, pages 448–453, 2010.

J. Wang, Y. Sun, W. Zhang, I. Thomas, S. Duan, and Y. Shi. Large-scale online multitask learning
and decision making for flexible manufacturing. IEEE Transactions on Industrial Informatics,
12(6):2139–2147, 2016.

A. Wiesner, A. Saxena, and W. Marquardt. An ontology-based environment for effective
collaborative and concurrent process engineering. In IEEE International Conference on
Industrial Engineering and Engineering Management, pages 2518–2522, 2010.

M. Wollschlaeger, T. Sauter, and J. Jasperneite. The future of industrial communication:
Automation networks in the era of the internet of things and industry 4.0. IEEE Industrial
Electronics Magazine, 11(1):17–27, 2017.

C. Xie, H. Cai, L. Xu, L. Jiang, and F. Bu. Linked semantic model for information resource
service towards cloud manufacturing. IEEE Transactions on Industrial Informatics, 13(6):
3338–3349, 2017.

X. Xu. From cloud computing to cloud manufacturing. Robotics and Computer-Integrated
Manufacturing, 28(1):75–86, 2012.

X. Xu and Q. Hua. Industrial big data analysis in smart factory: Current status and research
strategies. In IEEE Access, pages 17543–17551, 2017.

X. Xue and J.Chang. The research on context-aware-based intelligent service system for miners.
In IEEE International Conference on Services Computing, pages 478–485, 2012.

N. Yusupova, O. Smetanina, A. Agadullina, and E. Rassadnikova. The development of ontologies
to support the decisions in production systems management. In Russia and Pacific Conference
on Computer Technology and Applications, pages 188–193.



18 ragavan et al

C. Zhang, G. Zhou, and Q. Lu. Decision support oriented ontological modeling of product
knowledge. In IEEE Information Technology, Networking, Electronic and Automation Control
Conference, pages 39–43, 2017.

J. Zhang, B. Ahmad, D. Vera, and R. Harrison. Automatic data representation analysis
for reconfigurable systems integration. In IEEE International Conference on Industrial
Informatics, pages 1033–1038, 2018.

Y. Zhang, L. Li, J. Nicho, M. Ripperger, A. Fumagalli, and M. Veeraraghavan. Gilbreth 2.0: An
industrial cloud robotics pick-and-sort application. In Proceedings of the IEEE International
Conference on Robotic Computing, pages 38–45, 2019.

X. Zheng, P. Martin, K. Brohman, and L. D. Xu. Cloud service negotiation in internet of things
environment: A mixed approach. IEEE Transactions on Industrial Informatics, 10(2):1506–
1515, 2014.


