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Abstract— In the future, robots are expected to autonomously
interact and/or collaborate with humans, who will increase the
uncertainty during the execution of tasks, provoking online
adaptations of robots’ plans. Hence, trustworthy robots must be
able to store, retrieve and narrate important knowledge about
their collaborations and adaptations. In this article, it is pro-
posed a sound methodology that integrates three main elements.
First, an ontology for collaborative robotics and adaptation to
model the domain knowledge. Second, an episodic memory
for time-indexed knowledge storage and retrieval. Third, a
novel algorithm to extract the relevant knowledge and generate
textual explanatory narratives. The algorithm produces three
different types of outputs, varying the specificity, for diverse
uses and preferences. A pilot study was conducted to evaluate
the usefulness of the narratives, obtaining promising results.
Finally, we discuss how the methodology can be generalized
to other ontologies and experiences. This work boosts robot
explainability, especially in cases where robots need to narrate
the details of their short and long-term past experiences.

I. INTRODUCTION

The development of applications where humans and robots
collaborate triggers the appearance of several issues such as
those related to trustworthiness between the collaborative
agents. For proper cooperation, mutual understanding of
the ongoing events and communication between teammates
become essential [1]. In regard to this, narratives seem to help
with understanding agents’ actions [2]. Hence, collaborative
robots could narrate what they know of their experiences, i.e.,
collaborations and plan adaptations, to be more understand-
able. Those robot narratives may boost explainable agency
(i.e., explaining the reasoning of goal-driven agents and
robots), which has recently gained significant momentum [3],
[4]. Robotic tasks may involve several events and a lot
of contextual knowledge. Hence, time-indexed narratives of
events (i.e., narrating events when they occur) make more
sense in robotics than in other artificial intelligence tasks (e.g.
classification), where single post hoc and time-independent
narratives or explanations might suffice.

Langley et al. [5], discussed the need for three elements of
explainable agency: a representation of the domain knowl-
edge, an episodic memory to store the knowledge, and the
ability to access and retrieve that knowledge to generate
explanations. Episodic memory is the collection of past
personal experiences that occurred at particular times and
places [6]. Beetz et al. [7], presented the second generation
of KnowRob, a knowledge-based framework for robotics,
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Fig. 1: Overview of the methodology for the generation
of explanatory ontology-based narratives for collaborative
robotics and adaptation (XONCRA).

which includes formal domain ontologies, and narrative-
enabled episodic memory (NEEM) storage and retrieval.
NEEMs may be useful to generate human understandable
explanatory narratives, but this is still unexplored, especially
in the collaborative robotics and adaptation domain.

In this article, we present a methodology (see Fig. 1)
for the generation of eXplanatory Ontology-based Narratives
for Collaborative Robotics and Adaptation (XONCRA). The
domain knowledge is modeled using the Ontology for Col-
laborative Robotics and Adaptation (OCRA) [8]. The knowl-
edge of robot experiences is stored in NEEMs [7] for later
retrieval. As a technical (open source) contribution, OCRA is
integrated into the NEEMs framework. The novel theoretical
contribution is an Algorithm for eXplanatory Ontology-based
Narratives (AXON). From the episodic memory, AXON
retrieves the relevant knowledge about robot collaborations
and plans’ adaptations, and then it constructs the final textual
narrative. The proposed algorithm produces different types of
narratives based on the chosen amount of detail (specificity),
addressing different users’ preferences. We evaluated the
quality (usefulness) of the narratives’ information through
a pilot study with users. Finally, we briefly discussed XON-
CRA’s potentiality to generalize to other ontologies and
NEEMs. To the best of our knowledge, this is the first work
to use a (temporal) episodic memory to generate ontology-
based textual explanatory narratives. In this work, we tackled
the following research questions:

• RQ1 - How can robots construct the narrative of their
collaborative and adaptive events (experiences)?

• RQ2 - How does the narratives’ specificity affect the
users perceived usefulness of the received information?



II. RELATED WORK

We found great inspiration in the narrative and storytelling
literature. Labov et al. [9], defined a narrative ‘as a way of re-
counting past events, in which the order of narrative clauses
matches the order of events as they occurred’. Carr [2], stated
that in order to provide explanatory information, a narrative
should contextualize the agent’s experiences in time. Both
works emphasized the importance of the time when the
events occurred, reinforcing the need for episodic memory.
Narratives have already been an inspiration for works on
robot task plans’ verbalization [10], [11], [12].

A sound approach to represent domain knowledge is
to use representation formalisms such as ontologies. The
1872–2015 IEEE Standard Ontologies for Robotics and
Automation [13] and the 1872.2-2021 IEEE Standard for
Autonomous Robotics Ontology [14] were developed to
become references for knowledge representation in the do-
main. Indeed, the use of ontologies has spread to several
robotics sub-domains [15], [16], [17]. Some examples are
manufacturing and collaborative robotics [18], [19], [20],
[21], [22], [23], [8], robot co-design [24], [25], and service
and general purpose robots [7], [26], [27]. All these works
are steps towards the harmonization and formalization of
the knowledge in the robotics domain. Hence, they have the
potential to play a major role in the explainable agency.

The notion of episodic memory was first introduced by
Tulving as the collection of past personal experiences that
occurred at particular times and places [6]. Its essence
lies in the conjunction of three concepts: self, autonoetic
awareness, and subjectively sensed time [28]. Beetz et al. [7],
introduced a knowledge-based framework for robots that
includes an episodic memory, the narrative-enabled episodic
memory (NEEM). It consists of the NEEM experience (low-
level time-indexed information) and the NEEM narrative
(symbolic descriptions, e.g., goals, states, etc.). NEEMs have
already been used in human-robot interaction [29], and robot
learning [30]. Nevertheless, their role in the generation of
robot textual narratives still remains unexplored.

In the literature, several authors worked on automatic
text generation using knowledge modeled in OWL (Web
Ontology Language) or RDF (Resource Description Frame-
work) [31], [32], [33], [34]. Although inspiring, none of
those works discussed the generation of different types of
texts based on the preferred specificity. Furthermore, in ours,
the target knowledge to be included in the textual narratives
is automatically retrieved, while the others just assumed that
the knowledge atoms or tuples were given.

III. XONCRA - EXPLANATORY
ONTOLOGY-BASED NARRATIVES FOR

COLLABORATIVE ROBOTICS AND ADAPTATION

A. Preliminary notation

Let’s assume countable pairwise disjoint sets NC , NP ,
and NI of class names, property names, and individuals,
respectively. The standard relation rdf:type, which relates
an individual with its class, is abbreviated as type and

included in NP . A knowledge graph G is a finite set of
triples of the form ⟨s, p, o⟩ (subject, property, object), where
s ∈ NI , p ∈ NP , o ∈ NI if p ̸= type, and o ∈ NC

otherwise. The semantic knowledge of an episodic memory
can be seen as a time-indexed knowledge graph GT , which
is a finite set of tuples of the form ⟨s, p, o, ti, tf ⟩, where
ti, tf ∈ R > 0, and denote the time interval (initial and
final time) in which the triple ⟨s, p, o⟩ holds. Knowledge
graphs commonly comply with the open-world assumption,
thus, non-asserted triples are unknown instead of false. For
this reason, the second version of the Web Ontology Lan-
guage (OWL 2) allows to make explicit negative properties
assertions: ⟨s, p, o⟩ is false.3 Hence, in GT one may store,
for instance, that during an interval of time, ⟨ti, tf ⟩, an
event e is not an instance of the class Collaboration:
⟨e, type, Collaboration, ti, tf ⟩ is false. In this work, query-
ing the GT , we build what we called ‘narrative tuples’ of an
instance event, Te: ⟨s, p, o, ti, tf , sign⟩, where sign indicates
whether the time-indexed triple comes from a positive or
negative assertion.

B. NEEMs for collaborative robotics and adaptation

Our methodology incorporates a knowledge-based
episodic memory for collaborative robots that adapt in
unstructured scenarios. It consists of the integration of
an ontology for collaborative robotics and adaptation
(OCRA) [8], into the NEEMs ecosystem of Knowrob [35],
[7]. It allows robots to represent time-indexed knowledge of
their collaborations and adaptations, store it and retrieve it
for a later generation of textual explanatory narratives.

1) Background on OCRA: The ontology was developed
to enhance the reusability of the domain’s terminology, and
to allow robots to formalize and reason about two main con-
cepts: collaboration and plan adaptation. Collaboration
is defined as ‘an event in which two or more agents share
a goal and a plan to achieve the goal, and execute the
plan while interacting’. Plan Adaptation is ‘an event
in which one (or more) agent, due to its evaluation of the
current or expected future state, changes its current plan
while executing it, into a new plan, in order to continuously
pursue the achievement of the plan’s goal’. Considering
those definitions, narratives of Collaborations shall
include knowledge about the shared plan and goal, and the
agents executing the plan. Meanwhile, narratives of Plan
Adaptations must contain details regarding the initial
and new plans, the situation triggering the adaptation, and the
involved agent. In this work, it is used OCRA’s formalization
in OWL 2 DL, a description logic version of OWL 2.

2) Background on NEEMs: For every activity the robot
(agent) performs, observes, or prospects, it can create an
episode and store it in its memory. An episode is best
understood as a video recording that the robot makes of the
ongoing activity (see Fig. 2). In addition, those videos are en-
riched with a very detailed log of the actions, motions, their
purposes, effects, and the agent’s sensor information during

3www.w3.org/2007/OWL/wiki/FullSemanticsNegativePropertyAssertions
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Fig. 2: Visualization of a recorded NEEM of a prototypi-
cal collaborative kitting task (filling a tray) with different
episodes within it (a, b, and c).

the activity. The episodic memories created by Knowrob
are named narrative-enabled episodic memories (NEEMs).
A NEEM consists of the NEEM experience and the NEEM
narrative. The NEEM experience captures low-level data
such as the agent’s sensor information, e.g. images and
forces, and records of poses of the agent and its detected
objects. NEEM experiences are linked to NEEM narratives,
which are logs of the episode described symbolically. These
narratives contain information regarding the tasks, the con-
text, intended goals, observed effects, etc. In this work,
the focus is on the NEEM-narrative, since the aim is to
explain the symbolic understanding that the robot has of its
experiences. A detailed overview of NEEMs can be found
in the NEEM Handbook [36].

3) Integration: NEEMs are modeled using OWL 2 DL
ontologies built upon the DOLCE+DnS Ultralite (DUL)
foundational ontology [37], the same upper-level ontology
that OCRA relies on. OCRA was integrated into Knowrob’s
and NEEMs’ ecosystem without causing any ontological
inconsistency. The knowledge base is accessible to the
robot through a prolog-based service implemented as a ROS
(Robot Operating System) package: rosprolog.4 It was imple-
mented a novel ROS package (know-cra) in which OCRA is
integrated into Knowrob’s framework. This implementation
is publicly available on a Github repository,5 and illustrates
how to load and use OCRA, and some instantiated use cases,
with Knowrob. Furthermore, the shared code also includes
examples of manipulating recorded NEEMs.

C. AXON - An algorithm for explanatory ontology-based
narratives

AXON is our major theoretical contribution, a novel
algorithm that retrieves knowledge about target experiences
or events from episodic memories, and uses the knowl-
edge to construct textual explanatory narratives. The time-
indexed knowledge graph GT stored in the episodic memory
is the first algorithm’s input. Furthermore, AXON takes
three more inputs: the ontological class (or classes) of the
events to narrate, the temporal locality (time interval of the
events of interest), and the level of specificity. Although
our focus is on narratives about Collaborations and
Plan adaptations, AXON is general enough to work
with other OWL 2 DL ontologies and classes, as it is
discussed in Sec. V. There are three different narrative types,
depending on the selected specificity. In this work, specificity

4www.github.com/knowrob/rosprolog
5https://github.com/albertoOA/know cra

Algorithm 1: AXON
Input: Episodic memory (GT ), events to narrate (C),

temporal locality (Li, Lf ), specificity (S)
Output: Narrative (E)

1 E ←− ∅
2 IT ←− RetrieveInstancesWithTimeInterval(GT ,
C, Li, Lf )

3 foreach ⟨e, ti, tf ⟩ ∈ IT do
4 Te ←− RetrieveNarrativeTuples(GT , ⟨e, ti, tf ⟩, S)
5 Ee ←− ConstructNarrative(Te)
6 E ←− E ∪ Ee
7 end

refers to the amount of detail used to construct the textual
narrative, more precisely, the number of knowledge tuples.
This section first introduces the main algorithm (see Alg.
1), and then we explain its three major routines: Retrieve
Instances With Time Interval, Retrieve Narrative Tuples, and
Construct Narrative. An implementation of the algorithm and
an example of use can be found at an online repository.6

AXON first retrieves a set IT of tuples ⟨e, ti, tf ⟩, contain-
ing the event instances e of the provided classes C whose
time interval (ti, tf ) exists, at least partially, within the
temporal locality (Li, Lf ) (line 2). Second, based on the
specificity S, the algorithm retrieves a set of knowledge tu-
ples Te related to each instance (line 4). Third, an explanation
Ee for every instance is constructed using their respective
tuples (line 5). Finally, the algorithm concatenates the new
explanation to the set of explanations E (line 6).

1) Retrieve instances with time interval routine: Given a
time-indexed knowledge graph GT , an ontological existing
class or a set of them, C ⊂ NC , and a time interval
⟨Li, Lf ⟩, this routine retrieves a set IT containing all the
time-indexed instances ⟨e, ti, tf ⟩ of the given classes such
that ∀⟨e, ti, tf ⟩ ∈ IT → ∃c ∈ C ∧ ⟨e, type, c, ti, tf , sign⟩ ∧
⟨ti, tf ⟩ ∩ ⟨Li, Lf ⟩. Some examples of instances of events to
narrate with their time interval may be the following:
⟨Event 15, 100.0, 142.0⟩,
⟨Event 27, 200.0, 240.0⟩.

2) Retrieve narrative tuples routine: Given GT , an in-
stance event e to narrate with the time interval in which it ex-
ists ⟨ti, tf ⟩, and the specificity level S, this routine retrieves
all the relevant tuples, ⟨s, p, o, ti, tf , sign⟩, to construct the
narrative. The first level of specificity can be considered as
a baseline and only returns tuples containing the class c of
each instance: ⟨e, p, c, ti, tf , sign⟩ ∈ GT ∧ p = type. In the
second level, the algorithm adds all the tuples in which the
instance e is related to an object o through any property
different to type: ⟨e, p, o, ti, tf , sign⟩ ∈ GT ∧ p ̸= type.
Finally, the third level adds all the tuples in which the objects
o from the second level are related to other objects ox:
⟨o, px, ox, tix, tfx, signx⟩ ∈ GT ∧ ⟨ti, tf ⟩ ∩ ⟨tix, tfx⟩. As
robots’ experiences are tied to a time frame, the search was
restricted to tuples whose time interval ⟨tix, tfx⟩ intersected

6https://github.com/albertoOA/explanatory narratives cra
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Fig. 3: Graphical representation of the different levels of
specificity (S) and their respective depth in the knowledge
graph. (a) S = 1, (b) S = 2, and (c) S = 3.

the time interval of the instance ⟨ti, tf ⟩. This aimed to avoid
retrieving tuples that were irrelevant to the narrative of the
instance e. Furthermore, if a tuple or its inverse already exists
in the retrieved set Te, it is not added. Note that the retrieved
tuples for each level are also included in upper levels (e.g.,
the tuples from the first level are also returned in the second
and the third). In an intuitive way, this would be equivalent
to go deeper in the knowledge graph (see Fig. 3). Using as
example the task of filling a tray (from [8]), some instances
of the retrieved narrative tuples Te of an event are:
Te1 . ⟨Robot, hasPlan, Place Tokens By Color, 200.0, 240.0, positive⟩,
Te2 . ⟨Event 27, hasParticipant, Robot, 200.0, 240.0, positive⟩,
Te3 . ⟨Place Tokens By Color, isPlanOf, Human, 200.0, 240.0, negative⟩,
Te4 . ⟨Human, isParticipantIn, Event 27, 200.0, 240.0, positive⟩,
Te5 . ⟨Human, type, Physical Agent, 1.0, 1000.0, positive⟩.

3) Construct narrative routine: Given the narrative tuples
Te of an instance event to narrate e, this routine constructs the
final explanatory narrative following a set of rules: casting,
clustering, ordering, and grouping. These rules, proposed
by Dalianis et al. [34], define the aggregations that humans
usually do in natural language.

Casting consists in homogenizing all the properties used
in the tuples. First, making sure that in all the tuples
Te concerning the target instance e (Te2 and Te4 in the
previous example), e acts as the subject of the tuple. Hence,
when Te contains a tuple in which e acts as the object,
⟨s, p, e, ti, tf , sign⟩ ∈ Te, the algorithm inverts the tuple to:
⟨e, p−1, s, ti, tf , sign⟩, where p−1 is the inverse property of
p. In the tuples shown before, the tuple Te4 containing the
property isParticipantIn would be changed using its
inverse hasParticipant. Once this is done, all the tuples
regarding e are added to the set of cast tuples TeCast. The
second step in casting involves the tuples not concerning e
(Te1 , Te3 and Te5 ), ensuring that each tuple’s property is
consistent with the properties already existent in the cast
tuples. Otherwise, the tuple is inverted before adding it to
TeCast. In the example, Te1 is added to TeCast (following
the order), thus, Te3 needs to be inverted before added.

Then the routine clusters all the tuples ⟨s, p, o, ti, tf , sign⟩
that share the subject s. Therefore, when generating the
narrative, all the information about a specific subject will
appear together. In the example, Te2 and the inverted Te4 ,
and the inverted Te3 and Te5 would be clustered.

Next, the tuples are ordered: externally and internally.
The external ordering consists in ordering the subjects from
more information (more tuples) to less. This rule has one

exception, the information about the target instance is always
at the top front of the list. The internal ordering ensures that
the tuples with the property p = type are at the front of the
list for each subject. In the example, after applying all these
rules the set of tuples would change to:
T ′
e1

. ⟨Event 27, hasParticipant, Robot, 200.0, 240.0, positive⟩,
T ′
e2

. ⟨Event 27, hasParticipant, Human, 200.0, 240.0, positive⟩,
T ′
e3

. ⟨Human, type, Physical Agent, 1.0, 1000.0, positive⟩,
T ′
e4

. ⟨Human, hasPlan, Place Tokens By Color, 200.0, 240.0, negative⟩,
T ′
e5

. ⟨Robot, hasPlan, Place Tokens By Color, 200.0, 240.0, positive⟩.

Finally, the tuples are grouped into a sentence, con-
structing the final textual narrative Ee. First, the tuples
with the same subject, property, interval, and sign are
joined (object grouping). Hence, if there are two tuples:
⟨s, p, oa, ti, tf , sign⟩ and ⟨s, p, ob, ti, tf , sign⟩, the algorithm
joins them to: ⟨s, p, oa and ob, ti, tf , sign⟩. In the exam-
ple tuples, T ′

e1 and T ′
e2 would be joined into: ⟨Event 27,

hasParticipant, Robot and Human, 200.0, 240.0, positive⟩.
Second, the tuples for each subject are joined into separated
sentences (subject grouping) considering their sign and using
the conjunction ‘and’ and the propositions ‘from’ and ‘to’.
When generating the text of a negative assertion, it is
included the adverb ‘not’ before the property. Furthermore,
it is excluded the time interval of a tuple if it was equal to
the time interval in which the instance exists. The names of
properties, classes, and instances are kept, only the property
‘type’ is changed to ‘is a type of’. The final narrative for the
ongoing example would be:
‘Event 27’ has participant ‘Robot and Human’ from 200.0 to 240.0.
‘Human’ is a type of ‘Agent’ from 1.0 to 1000.0 and (not) has plan
‘Place Tokens By Color’. ‘Robot’ has plan ‘Place Tokens By Color’.

IV. VALIDATION: SETTING XONCRA TO WORK

A. Collaborative task: filling a tray with tokens

The validation of XONCRA was contextualized in a lab
mock-up of a real task, where a robot and a human shared
the task of filling the compartments of a tray/board (see
Fig. 4). The task’s objective was to obtain a tray full of
tokens. The specific order changes to create different tasks
(e.g., tokens are sorted by color, in ascending order, etc).
When a token was not useful to accomplish the task’s goal
(e.g., compartments for that color are already filled), it was
discarded. The risk of human-robot collision was computed
using the pose and velocity extracted from an HTC Vive
tracker attached to the human’s hand using the Time-To-
Contact (TTC) [38].

Fig. 4: Setup of filling a tray, the validation task.



B. Robot experiences about collaboration and adaptation

Following the schema described in the proposed methodol-
ogy XONCRA (see Fig. 1), RQ1 is addressed. The first step
is to run executions, twelve in this case, of the validation
task. Those executions were designed to showcase diverse
situations of collaborations and adaptations according to
how they are defined in OCRA. Hence, varying their main
elements: the goal, the plan, and the workload distribution
between the human and the robot. In order to ensure a
curated knowledge base, the knowledge tuples involved in
those executions were manually stored into a single NEEM
after recording videos of the executions. From now, we will
refer to that NEEM as validation NEEM.

The twelve events included three cases of collaboration,
six robot plan adaptations, and three other situations with
non-collaboration. According to OCRA’s definitions, in the
collaborations, the human and the robot shared the goal (e.g.
full board with tokens in columns ordered by color) and the
plan, and both of them participated to accomplish the goal.
In the adaptations, the robot stopped executing a plan due
to an unexpected situation and started executing a new plan
better suited to accomplish the goal (e.g. the robot went to
another compartment when the human filled the one that
the robot wanted to fill). Finally, the events showing non-
collaborations (i.e. broken collaborations) represented cases
when one of the axioms needed for a collaboration to exist
was violated (e.g., the human stopped participating, or the
goal/plan was not shared).

C. Explanatory narratives generation: an example

The focus here is on one event among the twelve stored
in the validation NEEM. Event 15 shows the human stop-
ping the collaboration (see Fig. 5). Using AXON with the
parameters GT = validation NEEM, C = Collaboration,
(Li, Lf ) = (100.0, 142.0), S = 3, one obtains a narrative
of the specific event. Recall that the level of specificity 3
includes the result of levels 1 (red) and 2 (blue). To see the
rest of generated narratives visit the repository.7

‘Event 15’ (not) is a type of ‘Collaboration’ and is a type of ‘Event’ from
100.0 to 142.0 and executes plan ‘Place Tokens In Columns By Color’
and has participant ‘Robot’ and (not) has participant ‘Human’. ‘Place
Tokens In Columns By Color’ is a type of ‘Plan’ from 1.0 to 1000.0
and has component ‘Full Board With Tokens In Columns By Color’ and
is plan of ‘Robot and Human’. ‘Robot’ is a type of ‘Physical Agent’
from 1.0 to 1000.0 and has goal ‘Full Board With Tokens In Columns
By Color’. ‘Human’ is a type of ‘Physical Agent’ from 1.0 to 1000.0
and has goal ‘Full Board With Tokens In Columns By Color’.

D. Pilot study: analysis of the usefulness of information

The length of an explanatory narrative plays a major
role in the comprehension of its relevant information. The
aim is to be informative, providing as much information
as is needed, and no more [39]. Hence, a pilot study was
carried out to assess the perceived usefulness of the narratives
depending on their specificity, addressing RQ2.

7https://github.com/albertoOA/explanatory narratives cra/tree/main/txt

(a) (b) (c)

Fig. 5: Example of a non-collaboration in which the human
stops participating in the shared task. (a) The human wears
off its HTC tracker. (b) The human leaves the workspace.
(c) The robot continues performing the task alone.

Specifically, participants watched a video containing the
twelve events included in the validation NEEM. The video
depicted a textual narrative generated by our method after
each of the events. Users were asked to imagine that they
were about to receive training (the video with the narratives)
aimed at preparing them to collaborate with a robot. This
may be a real case in an industrial environment, where
a video of a human-robot collaboration plus automatically
generated narratives of the collaboration can be used to train
new operators. A between-subject study was conducted, with
three groups that evaluated each of the narratives’ types.
Groups 1, 2, and 3 evaluated the narratives with specificity
1, 2, and 3, respectively.

1) Procedure: The study was conducted at our facilities,
in an isolated room to avoid distractions. The experimenter
informed each participant of the procedure and asked them
to fill out an informed consent form, in which they gave
permission to gather their data for scientific purposes. Next,
users were shown a warm-up video with the experiment’s
context and the narratives’ format, ensuring that users re-
ceived the same information prior to the experiment. Then,
users watched the video with the twelve events recorded in
the NEEM plus a textual narrative after each of the events.
After watching the video, the participants were asked to
fill out a questionnaire with two parts: information quality
(usefulness) assessment, and open qualitative questions. The
videos and the questionnaire are provided as supplemental
material.8

2) Participants: 30 participants (10 per group) were re-
cruited. There was no withdrawal. Participants were aged
between 21 and 59 (26.7% of them were female), with M=29
and SD=7.61. Most of them (93.3%) had a background in
engineering, artificial intelligence, or robotics, and at least
70% had already interacted with other unspecified robots.
Participation in the study was voluntary.

3) Quantitative and qualitative analysis: For a quantita-
tive subjective analysis, it was used the quality of information
measurement discussed by Lee et al. [40]. They presented a
model for Information Quality, a questionnaire to measure it,
and analysis techniques to interpret the measures. This article
uses one of the quadrants of their model and its relative
questionnaire: usefulness. It aims to assess whether or not
the information is relevant to the user’s task, in our case,
the ‘new operator training task’. In particular, usefulness
was measured through five dimensions: appropriate amount,
relevancy, understandability, interpretability, and objectivity.

8www.iri.upc.edu/groups/perception/XONCRA
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Fig. 6: Results for the quantitative analysis of the information
usefulness. Users’ group number also corresponds to the
specificity level of the assessed narratives. Usefulness is
computed as the average of the other five dimensions.

For each dimension, a set of questions had to be evaluated
using an 11-point Likert scale ranging from completely
disagree (0) to completely agree (10). The results of the study
are shown in Fig. 6. Looking at them, one notes that the three
levels of specificity produced useful narratives (all above 6.5
points). However, the second level (Group 2) was perceived
as the most useful. Focusing on each dimension, the pre-
ferred narratives regarding the appropriate amount and the
interpretability were those with specificity 2. Nevertheless,
it is interesting to see that narratives with larger specificity
(Group 3), were perceived to contain more understandable
information. Other dimensions show negligible differences.

The questionnaire also included some qualitative measures
in the form of four open questions. First, the users were
asked if a video without narratives would prepare them
for real interaction with the robot and why. 86.7% of the
participants answered that the video without explanation
would not be enough to be prepared to collaborate with a real
robot. This corroborated the need for a narrative, regardless
of the specificity. The second question asked whether the
explanation had helped to prepare them for real interaction
with the robot and why. 66.7% found the narratives greatly
helpful. However, this percentage changes if one looks at
the isolated answer provided by each group: 50%, 70%, and
80% for Groups 1, 2, and 3, respectively. Hence, narratives
with higher specificity seemed to be more helpful. Third, it
was asked if they would prefer a summarized or a complete
but repetitive narrative and why. 50% of the participants as a
whole would prefer a summarized explanation. Nevertheless,
that percentage grows to 70% for the participants of Group
3, who read longer narratives. Finally, it was asked if there
was any content they would add to the narratives. Some
participants proposed to include graphical information.

V. CONCLUSION

In this work, we presented XONCRA, a methodology
for the generation of explanatory ontology-based narratives
for collaborative robotics and adaptation. It is built upon
an existent ontology (OCRA) [8], and a knowledge-based
framework with episodic memories (NEEMs) [7]. These

two elements together enable the representation, storage,
and later retrieval of time-indexed knowledge. XONCRA
also comprises a novel algorithm, AXON, which automat-
ically retrieves knowledge from NEEMs to construct an
explanatory narrative with it. It can produce three types
of results based on the level of specificity. We provide an
implementation of the methodology and some examples,
addressing RQ1.

Depending on their specificity, the perceived narratives’
usefulness was assessed through a pilot study, answering
RQ2. Results indicated that participants found the three types
to be useful. However, it was discovered that users preferred
narratives generated with level 2 of specificity, especially for
their appropriate amount and interpretability. Nevertheless,
narratives with larger specificity (3), were perceived to con-
tain more understandable information. The positive finding of
this analysis is that all the narratives produced by XONCRA
can help and be useful. Moreover, the methodology can
address different preferences with respect to different trade-
offs: appropriate amount vs understandability, etc.

Note that even though we focused on narratives of
robot Collaborations and Plan Adaptations, our
methodology generalizes beyond our use case. By construc-
tion, it can deal with any other ontological class as long
as it is formalized in the appropriate format to use the
NEEMs framework. Indeed, there is a large list of available
NEEMs generated for other purposes, e.g., a human setting
up a table for breakfast, a robot monitoring a shelf in the
retail domain, etc.9 Utilizing those NEEMs, XONCRA might
produce narratives about Actions, Tasks, Objects, etc.

In the future, we would like to conduct a larger user study
for a better assessment of our work. Furthermore, we aim to
address some improvements extracted from the qualitative
analysis: using a more natural language, summarizing nar-
ratives, modeling human preferences, and adding graphical
information. Specifically, we will upgrade XONCRA to use
advanced natural language techniques and to do summaries
of the narratives (e.g. when some similar content has already
been provided). We will investigate how to model human
preferences to learn the preferred specificity level. We will
also use the knowledge graph structure to provide graphical
information supporting the narratives. Finally, we want to
use XONCRA with other ontologies and NEEMs.
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